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ABSTRACT

Operating systems are built and designed around two driving forces: the
capabilities of hardware, and the demands of software. Yet traditional2 2 Read: old.

operating systems and programming models have inertia, resulting in
interfaces for new hardware following the designs of existing interfaces.
As a result, programmers are limited in their ability to express the im-
portant parts of their programs due to the layers of compatibility and
overhead thrust upon them, despite their persistent demands for higher
throughput and lower latency. Operating system abstractionsmust evolve
into the modern day. Merely relying on decades old abstractions and
incremental change will relegate novel hardware of the last decade to a
fate of access via interfaces designed for tape and spinning rust.

We stand before an opportunity to study how a confluence of trends
may shift programming models away from a traditional, process-centric
view point towards a data-centric one, inwhich data is the primary citizen
of the system. This opportunity arises from trends in hardware that di-
rectly impact how we view the data access path and the responsibilities of
the operating system and the kernel.The increasing speed of interconnect
technologies draws computing nodes closer together in latency space,
increasing the efficiency and useability of shared memory. Persistence,
traditionally trapped low in the memory hierarchy, is leaking upward, as
access speeds for persistent devices increase3. As a result, the overhead 3 This includes new technologies

like byte-addressible non-volatile
memory DIMMs, but also
improvements in SSD
performance and interfaces.

of the traditional kernel-driven data access path begins to dominate the
cost of accessing persistent data. Finally, the increasing heterogeneity
and disaggregation of compute and memory devices demands increased
data and compute mobility, as software demands continued scalability,
distribution, and raw speed.

This dissertation presents a new, data-centric operating system and
programming model designed around the trends above. The data-centric
approach reframes the goals of the operating system and enables us to
re-imagine classic systems programming techniques into a model that
facilitates data sharing instead of hindering it. For example, classical
systems programming models and techniques tend to involve significant
complexity and overhead in dealing with data persistence and sharing,
such as expensive coarse-grained persistence operations, rigid RPC data
models, and serialization. In contrast, our data-centric approach gets the
kernel out of the way of the data access path, makes data mobile through
invariant references whose meaning does not change depending on ad-
dress space or machine4

4 In contrast to virtual memory,
whose references only have
meaning inside a single address
space., and thus removes the need for serialization.

ix



x acronyms

We will cover the motivation and hardware trends that lead to our
design, define a design space based on those trends, and finally discuss
Twizzler, a point in that design space that exemplifies the ideals we will
discuss. We will evaluate Twizzler with case-studies that demonstrate
system behavior, and efficacy and useability of our programming models,
by building several new pieces of software for Twizzler. These, along with
ported larger applications, will be used to demonstate the performance
of Twizzler and its programming model, often showing performance
increase just due to simplification of software layers.



For
Ellen,
Steve,
and Christina.
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FOREWORD

BASHIR: Out of all the stories you
told me—which ones were true,
and which ones weren’t?
GARAK: My dear doctor! They’re
all true.
BASHIR: Even the lies?
GARAK: Especially the lies.

—Star Trek: Deep Space Nine

This dissertation presents a narrative. That narrative is, at time of writing,
the best understanding of the work that I have. Any researcher knows that
one doesn’t start a research expedition with a fully formed understand-
ing of a narrative in-mind; instead, that narrative grows and changes
dramatically with each success, but more importantly with each failure.
And while I’d like the narrative—the story—of the work herein to contain
not just the sapling that is the product of my time at UCSC, but also the
dead branches that I’ve pruned along the way, such story telling would
distract from the scientific communication of this work. But I’d like to
expose a sample of that more accurate, but no less “true”, story here. Audiences know what to expect,

and that is all that they are
prepared to believe in.

—Rosencrantz and Guildenstern
Are Dead, Tom Stoppard

One might well question the logic behind prefacing this disseratation
with a refutation of its presented narrative. However, I think it’s important
to consider what effect a work may have upon a reader. In particular, if
even one student reads these chapters and comes away with a belief that
the scientific process (and, more specifically, the Ph.D. process) is linear
and not an experience of one feeling their way through a dark labyrinth,
then I will have been negligent in my duty to help future students and
avoid harming them. All this happened, more or less.

—Slaughterhouse-Five, Kurt
Vonnegut

Twizzler started as a combination of two things: my love for hacking
kernels, and an idea for a newOS focused on the exciting new technology
of byte-addressable non-volatile memory (NVM). It has since grown
well beyond that limited scope, but at the time, that limitation allowed
me to get started. We hadn’t yet figured out the “big picture” words to
use to describe what we were trying to do, instead we presented the work
as a straight-forward design to improve performance for applications on
NVM. It seemed like the perfect time, with Intel releasing 3D-Xpoint
memory, and the interest in NVM exploding. All I had to do was build
an operating system to manifest the designs we’d been whiteboarding.

I started by prototyping the ideas inside FreeBSD,modifying the kernel
to act like we wanted it to. This was largely a dead end, since we rapidly
ran into walls trying to force a Unix kernel to be something it wasn’t. The
FreeBSD prototype was superceded with a custom kernel and grew into
the main Twizzler operating system that is presented herein. It needed
to be reworked and redesinged several times, each time leading to me
pulling long nights programming and writing. But, in the end, the system
worked, despite us not yet having the right words to describe it.

Since I mentioned failure earlier, let’s talk about publications. It took us
years to get Twizzler published in a conference. Along the waywe had two
workshop publications, but the rejection notifications from conferences

xvii
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were, shall we say, starting to get to me. Fortunately, I had supportive
professors who showed me their “co-CVs”, containing lists of rejected
publications. I started keeping one as well. This is all to say—if you’re a
student, and you are struggling to publish: we have all been there5, and 5 Anyone who claims to know, in

full, what they are doing, is a liar.(despite how some program committees behave) we are rooting for you.
Maybe one day our academic publishing system will function well.

I’ve also had blessings in disguise. As I said earlier, the initial writings
on Twizzler framed the work nearly exclusively around NVM and per-
formance (“getting the kernel out of the way”). Looming on the horizon,
however, was the growing certainty that NVM (or, at least, 3D-Xpoint)
would not soon deliver on its promises. Looking back, we got lucky. We
were forced to rethink the narrative, to look at the forest instead of the
trees, and I think the work is much stronger as a result. We were able to
generalize. In fact, one of the benefits to the design presented in Chap-
ter 6 is that, while we built it for NVM at the start, it is actually quite
generalizable to larger contexts, and so much of the technical design
work for Twizzler wasn’t lost during this rethinking of the narrative.

The research process is labyrinthian, and never ending. The snapshot
of work presented here is distilled into a story that is, in my opinion,
straight-forward and compelling. But the road to get here was long, filled
with pot holes, dead ends, and complete reimaginings. I hope you enjoy
reading it as much as I have enjoyed making this crazy idea a reality.

♥ ♥ ♥

Daniel Bittman



Part I

PRELUDE

It’s the best possible time to be alive, when almost everything
you thought you knew is wrong.

—Valentine, Arcadia, Tom Stoppard





1
INTRODUCT ION

“Sometimes I find the best way of
getting from one place to another
is simply to erase everything and
begin again.”

—The Phantom Tollbooth,
Norton Juster

Let’s design and build a new operating system.

the motivation

The confluence of several hardware trends—persistent memory moving
up the memory hierarchy, faster interconnect technologies, and increas-
ing heterogeneity of compute and memory—demands a fundamental
shift in how we view applications’ relationships with hardware and data.
As persistence gets closer to compute in latency space, the line separating
the traditional two-tier memory hierarchy of fast, volatile memory and
slow, persistent storage begins to blur. Meanwhile, interconnect technolo-
gies are improving, causing separate computing nodes to be drawn closer
to each other in latency space, allowing them to more efficiently share
memory. Computing resources are spreading out, as we race to place
computing units in devices and near memory, and as we start seeing dif-
ferent kinds of physical memory on the bus, the traditional host-centric
and process-centric models of programming give way to models that
better express the increasing demands for concurrency and parallelism
between devices and computers.

Software both drives some of these trends, as it demands increasing
throughput and lower latency when processing data, but is also affected
by the trends, or more specifically, often limited in expressivity to what
abstractions are presented to software by the operating system6. The 6 OS abstractions, a favorite

punching bag!primary goal of a program is to access and operate on data. Any additional
required work that an application must perform to enable that goal is
overhead, both in terms of performance (latency or throughput) but
also complexity. Applications must routinely pay significant overhead
costs that ultimately source from the abstractions and programming
model enabled by the operating system, which is in turn sourced from a
model of hardware decades old. Traditional operating systemabstractions
and interfaces do not adequately reflect current hardware, the direction
hardware is heading, nor the demands of software upon those interfaces.

the opportunity
Two roads diverged in a wood,
and I—
I took the one less traveled by,
And that has made all the
difference.

—Robert Frost

We have an opportunity to examine hardware trends and evolve operat-
ing system design to make the best possible use of new technologies and

3
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trends. Mere incremental change will not enable the dramatic improve-
ments in performance and complexity heralded by these trends, just as
SSDs did not reach their full potential until they transcended the disk
paradigm7. Instead, we will discuss and examine a “clean-slate” approach 7 Arguably, they still haven’t.

SSDs were, for a long time,
treated as “fast disks”, to the
detriment of our storage stacks.

to operating system design that avoids trying to mold new hardware
into some backwards-compatible existing box8. Such an approach will

8 Imagine if we tried to access, say,
persistent RAM with interfaces
designed for magnetic tape!
Stares straight into the camera.

necessitate examining past research and reconsidering previously imprac-
tical ideas9 while extending those ideas for modern software, hardware,

9 Knowledge derives from
experience of the world, but what
if that world were to change?

and languages. Simultaneously, we must design new abstractions and
interfaces that expose a programming model that allows applications to
center around the data they are accessing while not requiring them to
twist into knots trying to best utilize modern hardware.

Our focus will be on a data-centric approach, in which data is the pri-
mary citizen instead of the process. As we will see, this framing around
data forces us to reconsider and reimagine classic systems programming
tropes like explicit, coarse-grained persistence barriers, call-by-small-
value RPC, shared memory, serialization, and in-memory data struc-
tures that cannot escape the bounds of a single process10. We will define 10 See Chapter 3.

a design space for data-centric operating systems that centers around
in-memory data in a global address space that can be shared across both
space and time, whose lifetime is disconnected from ephemera like pro-
cesses, nodes, and virtual address spaces, and which can be operated on,
persisted, and shared without the overhead of operating system involve-
ment in the data access path11. In a world where in-memory data can last 11 See Chapter 4.

forever and move across processes and nodes, the context required to
manipulate that data is best coupled with the data rather than ephemeral
constructs. Data has always been the focus of programming; it’s time our
operating system abstractions adequately capture this simple fact.

the implementation

Theprincipal hypothesis of this dissertation is that the data-centricmodel
for designing operating system abstractions is not only viable, but de-
manded both by software and hardware trends. Examining this hypothe-
sis will require answering a number of questions about the design space,
the practicality of any implementation of our ideas, and empirical mea-
surements of that implementation. To study data-centric operating sys-
tem design, we have built Twizzler, an operating system that embodies
the ideas presented herein.

Twizzler consists of a standalone kernel built from scratch, a set of
userspace libraries for programmingmemory, and a set of applicationswe
wrote and ported for evaluation. It provides a rich environment for pro-
gramming in-memory data structures that can be shared and persisted
by presenting data access as memory access within a (very) large global
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address space in which references to any other piece of data are efficiently
encoded. Traditional operating system abstractions reflect the hardware
they are designed for, and Twizzler is no different. Twizzler’s abstractions
for data access center around two core concepts: remove the kernel from
the data path, and enable the construction of in-memory data that
is free from ephemeral context. We will see how these core concepts
manifest, both in how they enable new ways of building applications and
in how they improve performance when accessing data.

the claims

This dissertation, in addition to investigating the aforementioned princi-
pal hypothesis, makes the following claims:

1. Retrofitting existing interfaces is insufficient. Instead, the correct
approach to reimagining programming in a world of changing
memories is to rebuild the operating system from the ground up.
Similarly, backwards compatibility, while important, is not the
primary goal of a reimagined system. Applications that want to
adapt to new hardware trends should get first-class support.

2. A global address space of all data is a viable design for long-lived,
in-memory data structures, and access to that address space can
be done efficiently with little kernel involvement12. 12 See Chapter 5.

3. The implementation of references within the global address space
matters beyond simple performance tradeoffs. We can encode
references within the address space to not only be invariant—i.e.
not based on any local context—but we can also encode them
efficiently, despite the address space being large, with less space
overhead than alternative approaches13. 13 See Chapter 6.

We will examine these claims in more detail throughout the following
chapters, keeping in mind the goal—that by providing in-memory data
structures that don’t require kernel intervention in the data access pathwe
can center programming around data instead of actors. Showing a viable
approach to low-coordination global data naming and accessing is the
primary piece of the puzzle. But after we place this puzzle piece, there is
still much work to do—the operating system must provide basic services,
convenience libraries, interfaces for ensuring safety in failure-atomicity
and type correctness for persistent data, and (last but certainly not least)
security14. These aspects are no less important than the enumerated 14 See Chapters 7 and 8.

claims, however we will approach them in such a way that ties them back
to be fundamentally derived from the core concepts of Twizzler.
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the signposting
“Being lost is not a matter of
knowing where you are. It’s a
matter of knowing where you
aren’t.”

— The Phantom Tollbooth,
Norton Juster

Chapter 2 discusses, in detail, the hardware trends we are considering
and the implications they hold, followed by a discussion of how those
trends will inform our operating system design work.

Chapter 3 covers the software demands of hardware and interfaces, pri-
marily focused on the overheads that software has to deal with to get
around “the context problem”.Wewill cover serialization15 for persistence 15 “Boo”ing sounds.
and distribution as well as patterns of RPC.

Chapter 4 combines the insights from the previous two chapters and
discusses data-centric operating system design, introduces Twizzler, and
provides an overview of relevant operating system, persistent memory,
and systems research.

Following Chapter 4, we begin to focus more specifically on the design
and implementation choices we made for Twizzler, studying them in
case studies, performance analysis, and modeling. Chapter 5 covers the
design of the global address space in Twizzler, the model of data objects
Twizzler uses, and models the collision possibility of object IDs within
the space. Finally, it discusses how the global address space is realized
and accessed on existing hardware.

Chapter 6 discusses how we encode references within the global address
space, introduces the foreign object table, our solution to naming data
in an invariant fashion, and performs case-studies on using invariant
references to build real data structures that serve as a backend to a ported
version of SQLite. These software are then evaluated for performance
and compared to other solutions to persistent memory programming.

Chapter 7 enumerates several core aspects of Twizzler as an operating
system, such as object services, program instancing, threading, security,
and Unix compatibility.

Chapter 8 goes over higher level programming concepts, such as failure-
atomicity, type safety, memory safety, crash consistency, and new patterns
enabled by Twizzler’s object and invariant references model.

Chapter 9 concludes with a look back on the presented work and a look
to the future for operating systems, Twizzler, and data-centric designs.

Twizzler is open-source and can be found at twizzler.io16. 16 You can tell that it’s a
noteworthy project because the
GNU config.sub file recognizes it.

https://twizzler.io
https://mail.gnu.org/archive/html/config-patches/2019-09/msg00001.html


2
FAR OUT MEMORY HIERARCHIES

“I never am really satisfied that I
understand anything; because,
understand it well as I may, my
comprehension can only be an
infinitesimal fraction of all I want
to understand about the many
connections and relations which
occur to me, how the matter in
question was first thought of or
arrived at…”

—Ada Lovelace

synopsis The world is changing around us! This chapter introduces the
hardware trends that we observe and discusses some of the details behind
our expectations of how these trends will pan out. We will discuss persis-
tence, including both SSDs and NVM, along with memory disaggregation,
interconnect technologies, and device controller complexity.

Operating systems provide abstractions for data access that reflect
the hardware for which they are designed. For example, our current I/O
interfaces reflect a structure that takes as axiom the separation between
volatile and persistent data domains. Any assumptions we make about
hardware, however, may become less accurate over time, resulting in an
increasing impedance mismatch between the interfaces provided and
the underlying hardware. One of the most basic goals is to

build up some abstractions in
order to make the system
convenient and easy to use.
Abstractions are fundamental to
everything we do in computer
science. Abstraction makes it
possible to write a large program
by dividing it into small and
understandable pieces [...]
Abstraction is so fundamental that
sometimes we forget its
importance.

—Operating Systems:
Three Easy Pieces [3]

It therefore pays to examine the trends in hardware17 and reexamine

17 And software, as we will see in
the next chapter.

how we expose that hardware to applications. The work presented herein
starts with the assumption that hardware trends are, at minimum, worth
examining to see how we may wish to update our interfaces. We argue
further that the trends and opportunities we are presented with demand
a full scale revolution in how programming models are designed, and in
the design of operating systems that wish to support new models. Let’s
first explore some hardware trends, and then, in the next chapter, put
those trends in the context of the software that we wish to better support.

2.1 memory and compute

Memory and storage are getting closer and further away18. Closeness of

18 Bear with me, now!

memory to CPU in latency space has long been a vital part of ensuring
speedy computation. However, in the constant battle between latency
and throughput (and complexity and density), latency often loses, and
the latencies of DRAM have not seen dramatic reductions for some time.
Meanwhile, access to persistent memory is getting faster in latency and
throughput. Not only are SSDs improving, but so too are the protocols
they use and the link speeds between them and main memory [77, 129].

Recently, we have also seen commercially available byte-addressable
Non-volatile Memory (NVM) in a DIMM form-factor. This technol-
ogy, Intel Optane19

19 We will discuss the outcome of
Intel’s “attempt” to market this
technology later.(using 3D-Xpoint technology), provides a persistent

memory with low latency—only 1.5–8× the latency of DRAM in most

7
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cases [61]—that is accessible from the CPU via normal load/store in-
structions. Direct, low latency access to NVM opens the door to building
systems around persistent data structures and avoiding serialization20. 20 Indeed, this is what we will do.

We can view the emergence of NVM as an extreme example of the
general trend of persistence getting closer to compute. As a result, the
relative cost of indirection and kernel involvement in the data path is
increasing. While before the cost of a system call was significantly less
than that of the actual device activity, nowwe are seeing the cost of device
access shrinking to a similar magnitude of the cost of a system call, or in
the case of NVM, even less.

2.1.1 Distribution

However, to stop here would be amistake. Another significant trend is dis-
aggregation, in which memory is placed across machines and programs
are written expecting various levels of access to this distributed mem-
ory. This is, admittedly, as much about software as it is about hardware,
however there are underlying hardware mechanisms that are driving
the push toward decoupling memory and compute. On a network level,
renewed interest in Distributed Shared Memory (DSM) is sourced from
a combination of several factors:

1. Network speeds are continuing to increase. With technologies like
100 Gigabit NICs and 10 Tb/s switches, previous limitations on
distributed memory that arise from network performance reduce
or go away entirely.

2. Network hardware complexity is increasing. Not only can those
switches sustain 10 Tb/s of throughput, but they can also be pro-
grammable, allowing the network to havemuchmore participation
in protocols. Furthermore, we are seeing protocols like RDMA
enabling remote memory access via the network.

It isn’t just traditional networking in which memory semantics are
leaking out past a single traditional node. Interconnect technologies like
CXL have the potential to upend the traditional view of “CPU attached
to memory with peripheral devices” as the fundamental concept of a
node.These trendsmirror the persistence trends above—things that were
traditionally far away (other nodes’ memories) are getting closer in a
logical space, and things that were close (local DRAM and storage) can
be more efficiently shared.

Finally, improved fabrication techniques and shrinking feature sizes
means hardware controllers are increasing in complexity, offering more
autonomy from the CPU, off-CPU processing capabilities, and better par-
allelism. Hardware interfaces reflect the controller complexity expected
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of devices; for example, AHCI controllers improved request queuing
over ATA, and DMA allows hardware to copy data directly to and from
memory independently from the CPU. NVMe expands the responsibil-
ity of controllers again, adding deeper and parallel command queues,
requiring devices to multiplex requests themselves and allowing them
to exploit the parallelism of access available in SSDs. We expect these
trends to continue, resulting in more programmable hardware devices
that are able to act on shared, global memory with more autonomy.

2.1.2 Memory Density

Another point to make is one of increasing memory sizes, largely stem-
ming from increased density of memory technology. Not only can we see
this in DRAM, with well-known systems taking advantage of increased
DRAM sizes [94], one of the major selling points of Intel’s Optane NVM
was a significant increased density and lower cost per byte. Having larger
memories means a few things:

1. Some nodes may have wasted memory as workloads come and go.
This ties in with the above points about disaggregated memory—
sharing unused memory is more cost effective, since unused RAM
is wasted RAM.

2. Memory can have an induced-demand effect. Similar to how build-
ing additional lanes on highways often just increases traffic [17],
making more memory available can cause additional memory
traffic since working sets can be larger.

3. In-memory sharing can increase. With significantly larger memo-
ries, applications can take advantage by not writing intermediate
results to storage, and instead can write to shared memory.

2.1.3 The Heterogeneity of Memory

The advent of NVM in a DIMM form factor has given us further moti-
vation to consider the effects of a heterogeneous memory environment.
When all memory is a single “kind” (e.g. DRAM), it matters little from
where in the physical address space memory is allocated, since devices
(including the CPU) can only access one kind ofmemory between them21. 21 Yes, older devices are limited in

address space, but this is not
important, and I do not wish to
get stuck in the past.

However, if our physical memory is comprised of multiple kinds of mem-
ory, we must be more careful with our allocation. Programs may request
allocations of memory for their data based on different policies of what
kind of memory they want—volatile versus persistent, high-bandwidth
versus DRAM, to name a few.
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GPU
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mem

CPU
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DRAM
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Memory

Device

Interconnect Link

Interconnect

figure 2.1
Our expected system architecture.
Solid black lines show data paths.
Dashed lines and boxes show
potential dedicated paths.

But it’s not just allocation policy that is affected. Having different kinds
of memory means that large-scale movement of data between regions of
physical memory is now semantically meaningful and may be triggered
as a result of policy, evictions, etc. Interacting devices, therefore, must
coordinate on a shared mapping of logical data to physical data, as the
physical data might move between kinds of memory. One could easily
argue that this heterogeneity is not actually new—with NUMA, we see
many of the same problems. I agree! However, the correct solution is
to design around a fundamentally heterogeneous memory system and
build the concepts of data movement across physical memory into the
core abstractions. Such a model is not only useful for the advent of NVM
on the memory bus, but it also covers future additions of different kinds
of memory as well as subsuming the NUMA model.

2.2 some kind of model

These changes are coupled with a shift in focus for how data moves
throughout the system. Traditionally, data is considered to move into
main memory for computation by the CPU, followed by storage to per-
sistent memory (through a disk or SSD controller) or moved out onto
the network (through a network controller). Figure 2.1 shows a different
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model, where data is able to more fluidly move through the system, or
even needs less movement. With more complex controllers and off-CPU
processing, we expect non-traditional data paths to become more com-
mon. Say, for example, a packet arrives at the NIC containing compressed
data for GPU processing. A traditional system would move the com-
pressed data into main memory, decompress it using the CPU, and move
it into GPU memory for processing. Instead, we could see a dedicated
compression chip in the NIC whose job it is to decompress incoming
data. That data could then be moved directly between the NIC’s buffers
and the GPU memory, without involving the CPU and main memory at
all. This both reduces copies and frees these resources for other uses.

Note the rather generic model in Figure 2.1. We are intentionally not
ascribing specific properties to the components protrayed within. At-
temping to build generic system abstractions atop an abstracted model
while not losing too much in the abstraction is a fundamental essence
of operating system design. Here, we are trying to capture the basic
ideas of the trends we discussed—individual, higher powered devices,
accessing shared memory pools and possibly each others’ memory pools,
with possible NVM and fast interconnects that allow addressing control
and isolation22. Concretely, we can see this model mapping well to, for 22 Cache coherence is an issue

that we are not explicitly
designing for or against. It
remains to be seen how cache
coherence between these devices
will play out. Nonetheless, the
issues of coherence and
failure-atomicity are not lost on
us, and we will discuss them in
Chapter 8.

example, CXL, and even current PCIe systems23. As the trends we ob-

23 If we squint our eyes and have
perhaps undue faith in the
IOMMU.

serve continue, the inherent concurrency enabled by allowing devices to
operate more independently with more ability to share memory with-
out waiting for permission from the CPU and the reduced lengths of
code paths in processing data points strongly to a model like the one we
describe here.

2.3 so, what does this all mean?

The trends above imply several basic requirements for a set of operating
system interfaces:

remove the kernel from the data access path The cost
of system calls is too large relative to device access to justify their use in
the data path. We must provide lightweight, direct, memory-style access
for programs to operate on data.

assume data lifetime is disconnected from ephemera
Memory can now be pooled in units outside the purview of the CPU.This
can happen either in time—data can be persisted, where the CPU loses
control over that data when power is cycled—or in space—where data can
traverse a network, or be accessed by multiple devices on an interconnect.
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While these forms of temporal and spacial sharing have always existed,
they have either been relegated to “experts” in cordoned off low-level
areas of the system (drivers and DMA) or have been explicitly designed
around by, for example, building OS abstractions around an assumed
bifurcation of data into “volatile” and “persistent” domains, and asking
programmers to explicitly move data between them24. 24 We will explore this more fully

in the next chapter.However, when the previously outcast domains of persistence and net-
work become closer to compute as we saw above, either via faster access
or pushing compute power further out, we must design for in-memory
data structures. Long-lived data structures can directly reference per-
sistent data, so references must have the same lifetime as the data they
point to. Virtual memory mappings are, by contrast, ephemeral, and so
cannot effectively name persistent or distributed data. But perhaps more
importantly, in-memory data structures are what we compute on, and it’s
computation that matters most. If we can reduce or even remove extrane-
ous processing paths that waste time, we should take that opportunity.

towards a data-centric operating system We call an op-
erating system that meets both of the above requirements data-centric,
as opposed to current OSes, which are process-centric. Facilitating op-
erations by applications on in-memory data structures is the primary
function of a data-centric OS, which tries to avoid interposing on such
operations, preferring instead to intervene only when necessary to en-
sure properties such as security and isolation. To meet both of these
requirements a data-centric OS must provide effective abstractions for
identifying data independent of data location, constructing persistent
and distributed data relationships that do not depend on ephemeral
context, and facilitating sharing and protection.

why now? It is natural at this point to wonder, “why now? The mem-
ory hierarchy has always been changing.” This is true, but there are a few
unique elements to the recent changes we are seeing. First, the placement
of NVM directly on the memory bus is a fundamental dramatic shift in
how we view persistence and opens the door to true single-level stores.
Second, the increasing distribution of both memory and CPU requires
that we rethink how computation is delegated throughout the system
and how those separate memories and devices can organize, access, and
reference data. But, more fundamentally, this thesis argues that our data-
centric model was always the correct model. We just have an opportunity
to realize it, and modern hardware has the ability to make it efficient
and scalable. The memory hierarchy has always been changing, but our
interfaces have not kept pace. It is time for a revolution, designed for new
hardware and, as we’ll see in the next chapter, informed by software.
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THE DEMANDS OF SOFTWARE

“So many things are possible as
long as you don’t know they’re
impossible.”

—The Phantom Tollbooth,
Norton Juster

synopsis This chapter will focus on software, the needs of software
we must address, and the perspective of systems programming, putting the
hardware trends we spoke of last chapter into context. We will discuss the
problem of ephemeral context and discuss how persistence and RPC have
shared characteristics and concerns.

At their core, applications perform computation on in-memory data.
Yet much application complexity is tied up in the infrastructure sur-
rounding that computation, for example, in managing persistent state
and in performing serialization. Additional work done by the program
(or by the operating system on behalf of the program) that is merely
in service of setting up the computation and not the computation it-
self is considered overhead. Our goal is to reduce that overhead in two
ways: improving performance and reducing complexity. To do this, we
need to understand where overhead comes from, which elements are
fundamental, and which are not. One goal in designing and

implementing an operating system
is to provide high performance;
another way to say this is our goal
is to minimize the overheads of the
OS. Virtualization and making the
system easy to use are well worth
it, but not at any cost.

—Operating Systems:
Three Easy Pieces [3]

3.1 the old ways and “systems programming”

Current operating system interfaces are a poor fit for the trends and
hardware requirements we discussed last chapter. File read and write

interfaces, originally designed for sequential media and later expanded
for block-based media, require significant kernel involvement and often
serialization, violating both the requirement to reduce kernel involve-
ment, and the need to reduce the length of code paths around accessing
data. Figure 3.1 shows a fairly common data path for an application that
operates on (and perhaps mutates) some persistent data. First the data
is loaded explicitly into memory, either in a streaming fashion or as a
whole file, followed by the application manually deserializing it into an
in-memory form. Once this is done, the program may commence its
actual purpose—to perform computation—after which the results are
serialized and placed back onto disk with an explicit store operation.

Let’s consider the case from Chapter 2 of faster, closer persistence. In
the past, the overhead in manually loading and unloading data and in
transforming it to and from an on-disk form was acceptable, since the
cost to access the disk was high, and those explicit load and store disk
operations were going to be issued anyway. But when these operations

13
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figure 3.1
The “standard cycle” of systems
programming. We start with
some persisted data, explicitly
load it from disk into memory,
deserialize it, compute on it,
reserialize it, and explicitly store
it back to disk. Note that the
vast majority of this diagram
depicts stuff other than the
actual computation. The thick
red lines depict persistence
boundaries, across which data
exists in different contexts and
assumed lifetimes.

overshadow device access time, the overhead quickly becomes unaccept-
able. As devices become faster and as applications processmore andmore
data, we find that more and more of our processing time is spent here.
Applications can spend as much as 70� of the processing time [30] dese-
rializing and loading data into main memory at request time. Reducing
this overhead would save both in program time but also in programmer
time. Simplifying applications by removing serialization helps program-
mers by removing the need to maintain multiple data formats and the
transformation code to move data between those formats.

3.1.1 The Context Problem

If we look closely, the cycle in Figure 3.1 can represent more than just
processing files. It works equally well for receiving data from a network
and sending back a response (microservices and servers in general), or for
applications in a traditional pipeline, etc25

25 Those who sit high atop their
Unix throne claim that text is a
universal communication
language. Yet anyone who has
actually had the misfortune of
parsing the output of even a
moderatly complex Unix tool can
realize that systems programming
here involves just as much
serialization and processing work
as anywhere else—or else involves
doing computation directly on C
strings, a fate I would not wish
upon my worst enemy.

. But why do we often spend
so much time and effort with serialization and explicit I/O? Because the
POSIX abstractions fundamentally bifurcate our programming model
into two separate contexts:

1. Local Context contains data that is limited to a single domain, for
example in-memory data accessed via virtual addresses by a single
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process, or the domain of file descriptors. Data in a local context is
typically operated on “directly” since it’s usually in memory. Most
importantly, though, the data isn’t shared with other domains, and
it is ephemeral—its lifetime is tied to the context it is in.

2. Global Context contains data that is shared across all the domains.
Typically this covers data stored on disk or other stable storage.
Data in a global context is usually stored in some serialized format
and can be accessed by multiple domains simultaneously. The
lifetime of data herein is, in the limit, infinite26. 26 Even in the global context, we

traditionally separate local
storage and network storage. That
separation can be eroded
depending on the programming
model, however, as we will
discuss later.

These separate contexts give rise to the need to transform data between
them and to be explicit about marshalling data across the boundary. The
primary reason for the need for transformation has to do with data
references and naming data. For example, when applications operate on
in-memory data, references take the form of virtual addresses—pointers
refer to specific locations within the virtual address space. The virtual
address space is ephemeral—it’s tied to a specific process. But persistent
data is not ephemeral! By definition it is accessed by multiple processes,
either over time (different invocations of the same process), or across
space (shared between multiple processes), or both. In either of these
cases, virtual addresses cannot be used, since those addresses may not
agree across different contexts. So when sharing memory, any references
to local context data must be transformed into something that can be
interpreted within the global context.

More generally, we often lock data access behind context that is tied
to a shorter-lifetime actor, leading to unnecessary indirections and ex-
traneous work that the program must perform. This is illustrated in how
data relationships are typically handled, either:

1. Explicit, context-sensitive. As we saw with virtual address point-
ers, references between data are encoded explicitly but rely on
context provided by the ephemeral process abstraction. These ref-
erences cannot be reliably shared between applications and across
nodes which do not have the context necessary to interpret them.

2. Implicit. Many data relationships are implicit in applications. Al-
though there is a relationship between theUnix files /etc/shadow
and /etc/passwd, it is not explicit. This limits interoperability
between programs, prevents relationship discovery, and results in
a brittle environment if these files are moved or replaced.

3. Explicit, via mediators. Relationships can be encoded explicitly
without ephemera if we use a global name resolution service. For
example, an HTML file can refer to a style sheet by name. How-
ever, this presupposes the existence (and availability) of a global
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mediator and restricts programs from agreeing on the identity of
data behind a reference without complex inter-networking and
expensive global coordination.

In our view, the complexity of these mechanisms is a symptom of a
more fundamental problem: access to long-lived data is unnecessarily
mediated via ephemeral actors. We advocate a violent break from this
actor-centric model of data access, in favor of a model that elevates data
as the systems’ first-class citizen. Doing sowill require explicit context-free
references via globally unique identifiers (GUIDs) that name data objects.
These references are independent of context (e.g. process) that operates
on them, and require that all context necessary to interpret references be
stored within the data itself. Of course, we still need some understanding
of context-sensitive relationships, for example late-binding of names. We
do this via a “two-level” naming system in which GUIDs are authoritative
names to which we can bind additional names for purposes like local
references, changing data identification, and discovery27. 27 We will discuss these in more

detail in Chapter 6.Viewing the past through the lens of the present, it was always a mis-
take to entangle the context required to access and manipulate data with
ephemeral actors. However, in the days of slow networks, spinning disks
and small memories, it was possible to hide these complexities and in-
efficiencies. For one thing, disk-based I/O led to a model of sharing in
which long-lived data and computable data were stored in different kinds
of memory, in different formats (due to serialization), with different
reference formats (e.g., file names vs. virtual memory pointers). The
filesystem was a natural location to place the various hacks that were
required to paper over the reality that interacting with long-lived data
required figuring out how to name the short-lived processes that were
the primary citizens of the operating system.

Needless to say, a disaggregated system model—one in which a par-
ticular data reference may ultimately point to data on a different node
from the one observing the reference—exacerbates all of these problems!
Two different nodes that observe the same data reference should agree
on what data is being referred to, and by the same token, an individual
node observing two different data references should be able to determine
if they point to the same data. This asks the question of how to encode
these explicit context-free data references while remaining efficient and
avoiding global coordination28. 28 We will discuss and answer

these questions in detail in
Chapters 5 and 6.

3.2 retrofitting posix?

While I am arguing strongly that a clean-break reimagining is needed, it
is worth considering what an incremental approach might look like. For
example, the problem of direct access might be solved to some extent
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by mmap, the problem of global references could be solved by traditional
pointer swizzling built atop mmap, etc. We could even combine this with
RDMA to gain a DSM model.

Let’s first consider the use of mmap to provide an interface for NVM
before looking more broadly at persistence in general. The mmap system
call attempts to hide storage behind a memory interface through hidden
data copies. But, with NVM, these copies are wasteful, and mmap still has
significant kernel involvement and the need for explicit msync calls. “Di-
rect Access” (DAX) tries to retrofit mmap for NVM DIMMs by removing
the redundant copy, but this still fails to address the problem of global
context and in-memory data structures for persistent storage. Operating
on persistent data through mmap requires the programmer to use either
fixed virtual addresses, which presents an infeasible coordination prob-
lem as we scale across machines and is fundamentally unportable, or
virtual addresses directly, which are ephemeral and require the context
of the process that created them29. 29 These issues don’t even touch

the high kernel involvement,
in-kernel coordination, and
failure-atomicity hazards present
when using mmap [29].

Attempting to shoehorn NVM programming atop POSIX interfaces
(including mmap) results in complexity that arises from combining multi-
ple partial solutions. Given some feature desired by an application, the
NVM framework can provide an integrated solution that meshes well
with the existing support for persistent data structure manipulation and
access, or it can fall-back to POSIX resulting in the programmer needing
to understand two different “feature namespaces” and their interactions.
An example is naming, where a programmer may need to turn to the
filesystem to manage names in a completely orthogonal way to how the
NVM framework handles data references. For example, PMDK, anNVM
programming library, relies on a filesystem for naming and initial access
to persistent memory objects, resulting in different kinds of references,
feature sets from filesystems being applied (like security) while others are
not (data access), and the complexity of understanding how the PMDK
abstractions interact with the POSIX ones. Instead, our model prefers to
build legacy support atop new abstractions (as we will see in Section 7.4),
and avoid falling back to legacy models for persistent data access.

Even without NVM, we have similar problems. Our goal of program-
ming with memory semantics on in-memory data structures leads to
many of the same arguments as above. Additionally, systems that layer
new models atop existing interfaces often fail to facilitate effective per-
sistent data sharing and protection. PMDK, for example, makes design
choices that limit scalability, since its data objects are not self-contained
and do not have a large enough ID space, resulting in the need to coordi-
nate object IDs across machines, a problem we will explore in detail in
Chapter 5. For the same reason, although single-address space OSes [19]
somewhat address our requirements, they do not consider both require-
ments at once, nor do they provide an effective and scalable solution to
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long-term data references due to that same coordination complexity (as
we will discuss in Section 4.4).

3.3 remote procedure calls

One major aspect of systems programming, particularly in distributed
systems, is RPC30. We typically use RPC as a mechanism for decomposi- 30 Note that, if you look at

Figure 3.1 and squint your eyes, it
resembles not just persistence but
also communication and data
transfer across nodes.

tion in distributed systems, allowing us to break design problems down
into smaller, re-usable parts that hide implementation details and are
more easily debugged. Decoupling components with RPCs allows them
to scale independently—in principle, developers need only agree on a
common interface and message format to leverage the benefits of soft-
ware decoupling. Yet, in reality, RPCs enforce strict interface constraints
and often trade adaptability (narrow interfaces are harder to evolve)
for simplicity (narrow interfaces limit cross-component interactions),
ultimately hampering the goal of scalability.

The chief problem with RPCs is that they are fundamentally location-
and compute-centric: RPCs force a programmer to decouple an appli-
cation by explicitly separating the computational endpoint or location
where a function is invoked from the location where the function exe-
cutes. As a consequence, they are well-suited to a relatively narrow set
of use cases in which function arguments, which flow from invoker to
executor, and returns, which flow back, must be serialized and sent in
their entirety, and hence are small, and in which reference data must be
located on the executor.

Many scenarios would benefit from decoupling but are simply not
feasible using existing RPC mechanisms. For example, the invoking
endpoint may have abundant data but limited compute, the invoker may
wish to traverse a remote data structure, or the invoker may wish to refer
to data that they lack privileges to read. Rapidly growing model sizes,
privacy concerns, and the proliferation of last-milemodel customizations
all exacerbate the issue. Tomitigate the problem of location-centric RPCs,
data center operators often deploy discovery services, load balancers, or
other forms of middleware [40, 59, 72, 112, 121]. These extra indirection
layers make the execution endpoint abstract, but at the cost of increased
latency and added system complexity. Moreover, we argue that such
systems do not address the fundamental problem, which is that we need
a more general mechanism for module composition in distributed systems.

Motivating Example

To illustrate the poor fit of RPC as a decoupling mechanism for some
classes of applications, consider the problem of distributed inference for
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Rendezvous of data and compute.
Solid red arrows are additional
infrastructure-level tasks that are
not fundamental to the requested
computation.

edge devices. Here, sensors in mobile devices with modest processing
and storage resources (e.g. mobile phones) are the source of observa-
tions used both for training and inference. Recent work has focused on
decoupling and distributing machine learning training across edge and
cloud resources to minimize client-perceived latency, provide privacy
guarantees, and maximize server-side throughput [68, 114].

In this example, we focus on the inference problem that arises in re-
sponse to device input. Ideally, small models trained in the cloud (via a
methodology such as federated learning) are periodically shipped in their
entirety to edge devices, which perform local inference. Several trends
are upsetting this model. The first is the aggressive growth—roughly
10×/year—of models, in particular language models. In 2018, the largest
machine translation models at Google were 8.3 billion parameters [113]; a
mere two years later, the largest models exceeded 800 billion parameters!
Inference on sparse giant models which far exceed device resources must
be performed server side, where model serving presents a substantial
throughput bottleneck. This is further compounded by last-mile model
customization for end users, in which inference tasks for different devices
must be performed on slightly different models. As much as 70� of the
processing time [30] for these model-serving applications is spent dese-
rializing and loading the sparse personalized models into main memory
at request time. Finally, users prefer local models remain local due to
confidentiality concerns.

Consider a concrete example (Figure 3.2) that is bedeviled by all of
these complexities at once. A mobile device, Alice, in possession of a
locally-trainedmodel and an activation, wishes to perform a classification
task that requires a partition of a sparse global model, located on cloud
resource Bob. Further, imagine that Alice cannot perform the inference
locally, either because the global model fragment is too large or because
she has inadequate local compute. Finally, imagine that Bob is overloaded,
while a separate cloud resource, Carol, is mostly idle.

An ideal solution will minimize the latency Alice perceives and maxi-
mize the throughput offered by both Bob and Carol, all while satisfying
capacity constraints of each. It is easy to see that while this applica-
tion requires decoupling, RPC is the wrong abstraction in terms of per-
formance, expressivity, and flexibility. Data movement—whether from
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storage to DRAM on Bob or from Bob to Carol—requires costly serial-
ization. If moving the data to Carol and performing inference there is
the optimal solution, the application logic on Alice must orchestrate this
infrastructure-level concern, either by pushing the data through Alice
(Figure 3.2 (1), a naïve solution) or having the RPC executed on Carol
address Bob directly and pull (Figure 3.2 (2)). Both (1) and (2) require
additional logic on Alice to work—the programmer had to perform
the infrastructure level task of data movement. Fundamentally, these
issues arise because the system’s core abstraction is location-based—the
programmer is forced to manually orchestrate machines or resort to
costly copying31. Further, heterogeneity among end devices makes the 31 Additionally, there are issues of

security and coordinating
topology changes.

“hard-coded” data movement strategy brittle: a subsequent classification
request from client device Dave will be forced to run inference on the
server side even if it is equipped with the resources to do the work locally.

Figure 3.2 (3) is more ideal. The first step is for the computation to
move to Carol instead of first moving data in preparation. This may seem
like a minor point, but it is not—by specifying up-front the computation
we want to perform, we open the door for lower-level optimization to
examine our requests before we go around manually moving data. In
fact, the programmer may not be directly asking Carol to perform the
computation; instead the placement decision would be made by the sys-
tem. Once the code starts executing, we can then move data on demand
instead of having to move the entire object. Note that this matches the
same requirements we discussed above with respect to context—data
references must be context-free and global. With the ability to name data
in a global context, we not only reduce the need for serialization, but we
also gain the ability to pass by reference instead of by value.

patterns of rpc. While RPC is a poor fit here, there are appli-
cations for which RPC provides adequate decoupling. RPC shines in
situations where decoupling in the application meshes well with having
little data movement, where an RPC endpoint either fronts large data,
large compute relative to the invoker, or some combination, with small
arguments and return values. But call-by-small-value is a significant con-
straint, and there are many classes of applications that do not fit. We can-
not paper over this problem, either. Because RPC is disconnected from a
global notion of data identity, we either cannot do call-by-reference (be-
cause references must cross machine boundaries) or we must shoehorn
this functionality into the application logic and the RPC’s APIs, resulting
in brittle, repetitive, complex code to deal with the coordination, caching,
and prefetching that comes from distributed data and global references
when data moves.

The “good” use cases of RPC are ones in which code and data co-
location has already been preordained by initial decoupling (after which
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it is rigid) and data transfer is minimal—often manifesting as something
like a fronted key-value store service. This restricts code mobility (as it
accounts for no change to decoupling later), and requires a myriad of
RPC calls to implement all the ways a programmer might wish to view
data (one need only look at the many S3 APIs available as an example).
If we limit ourselves to traditional RPC, any situation (such as the one
discussed above) that does not fit this pattern either results in expensive
data movement and complex application logic, or it must be dismissed
altogether and the application redesigned. By allowing applications to
pass data references instead of just values, and by making data references
a first-class abstraction in the OS and the network, applications become
much simpler to express efficiently, even for what would be considered
pathological cases for RPC.

a counter to a defense of serialization A common re-
sponse at this point is to point out that serialization serves several other
purposes, such as ensuring portability between environments that use
different definitions of (e.g.) int in C, or different machine architectures
that differ in endianess. I find these defenses weak. Firstly, for worrying
about different ABI of types, this is already a problemwhen sharingmem-
ory, and is a solved one. Many languages offer support for fixed-width
values and have explicit FFI functionality32. As for endianess, much of 32 And continuing in the modern

day with C’s type system is a
complete misstep anyway.

the modern world uses little endian, and places that use big endian (net-
works) don’t really care about the data they are passing, they just worry
about protocol headers. In any case, both of these issues are problems
that we can (and regularly do) solve at the language level.

And furthermore, there is nothing fundamentally tying these elements
to the idea of global context and references, so even if they weren’t con-
cerns at all, we would still often need to serialize data as it moves across
contexts. Our approach is to solve the fundamental context problem
that motivates serialization now, and solve the smaller problems that got
mixed into serialization at a higher level. In the early days, building

computer systems was easy. Why,
you ask? Because users didn’t
expect much. It is those darned
users with their expectations of
“ease of use”, “high performance”,
“reliability”, etc., that really have
led to all these headaches. Next
time you meet one of those
computer users, thank them for all
the problems they have caused.

—Operating Systems:
Three Easy Pieces [3]

3.4 so, what does this all mean (part 2)?

Software is growing in complexity, software is becoming more and more
distributed with higher and higher demand for concurrency as it is asked
to process more and more data. As we saw both with accessing persistent
data and in RPC, serialization takes a huge amount of processor time and
a large chunk of an application’s complexity budget. Relying on kernel
crossings to perform I/O is costly, particularly if we reduce or remove
the need for serialization. Having to resort to call-by-small-value when
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trying to effect computation remotely severely limits the expressability of
distributed applications, and can have a negative impact on decoupling
and modularity—the very thing that RPC is supposed to solve.

If we are to provide a solution by way of a new programming model
and OS abstractions, it must be one that both solves the problems that
software has and provides abstractions that best take advantage of the
new hardware.Mere incremental changewill not get us there. Fortunately,
what we are seeing is a confluence of software demands and hardware
trends. The hardware is becoming better equipped to support high con-
currency, distributed applications that can share memory within a larger
context. To take best advantage of hardware, we must reduce kernel
involvement and move towards a global address space of in-memory
data—which is exactly the solution that cuts down the overhead of serial-
ization and system calls to zero. The remainder of this thesis will discuss
how we can use this global address space, with first-class support for
references, to solve not only the problems of persistence and the systems
programming cycle, but also that of computation mobility, factoring out
complexity, and providing simpler, higher performance applications. But
to do this, we will need an operating system built for that purpose.



Part II

A DATA-CENTR IC OS

The most dangerous phrase in the English language is “we
have always done it this way”.

—Grace Hopper





4
THE DATA-CENTR IC APPROACH

It’s the wanting to know that
makes us matter.

—Arcadia, Tom Stoppard

synopsis The last few chapters discussed the hardware trends and the
modern needs of software. This chapter will take those insights and define
a design space within which we will build a data-centric OS. We will then
conclude with a look back towards related, prior work.

4.1 an opportunity arises

Theconfluence of hardware trends (Chapter 2) and software needs (Chap-
ter 3) demands a fundamental shift in the way we program computers.
Our two-tier memory hierarchy does not adequately reflect what hard-
ware is trending to provide nor does it provide adequate abstractions for
applications to operate on data with low overhead. Meanwhile, the in-
creasing heterogeneity of our computing environments—different kinds
of memory at different distances, specialized computing devices, near-
storage compute, and remote computation—force us into a corner when
trying to use current operating system abstractions to model what is, in
essence, a global environment of computation and data. It is vital that
operating systems evolve to provide new abstractions—they must make
the best possible use of hardware trends to provide a programmingmodel
that aligns with software’s demands for low-overhead computation. Mere
incremental change is insufficient for enabling dramatic improvements
in performance and complexity.

Presented with these trends, we are building a data-centric operating
system, one that eschews the traditional process-centric (or actor-centric)
model of operating system design in favor of making data the primary
citizen. In process-centric models, the application is the first-class citi-
zen, operating on data in isolation, performing explicit persistence and
network activity, and relying heavily on serialization. Instead, as we will
see, a focus on data in a global space makes it possible to enable better
sharing (both between applications and devices on one machine and
between nodes), lower overhead computation, and simpler applications. Clearly, for computer systems to be

interesting, both input and output
are required.

—Operating Systems:
Three Easy Pieces [3]

Fundamentally, data is and has always been the focus of programming.
In the past, our abstractions have failed to adequately capture this simple
fact. But now, as software looks towards more modern programming
models and the friction between hardware and current models grows,
we have an opportunity to reimagine how we structure programs and
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data. It is a convenient time to make a break, when the impedance is
low—software will need to change to take advantage of new hardware,
and we should support those applications with better fitting models.

4.2 a design space

The idea of a data-centric operating system in which in-memory data is
the primary citizen still leaves a large space for how we might actually
design such a system. Indeed, the remainder of this dissertation will be
focused mostly on our design and implementation choices, the rationale
for those choices, and empirical evaluation. However, it is still worth
taking a minute to discuss the design space we are in and nail down what
it means to design a data-centric OS that meets the requirements set out
in the previous chapters.

low kernel involvement As we saw earlier, the kernel imposes
a heavy overhead on applications that wish to access data outside their
local context, even in the case of interfaces like mmap, particularly as
device latency continues to drop. A data-centric OS should, therefore,
avoid requiring significant kernel intervention, instead preferring to
allow applications to access data directly as in-memory data structures33. 33 See below.

The reduction in kernel involvement and responsibility has some wide-
reaching effects, which we call “the death of the process”.

Processes as a first class OS abstraction are, like virtual addresses, un-
necessary; a traditional process couples threads of control to a virtual
address space, a security role, and kernel state. However, with the kernel
removed from persistent data access, much of that kernel state34 is unnec- 34 E.g. file descriptors, file

abstractions, etc.essary, leading to a decoupling of mechanisms: nothing fundamentally
connects a virtual address space (a piece of ephemeral context used to
access data) and a security context (what data threads may access). In-
stead, a data-centric OS can keep the good parts of a process but separate
virtual address translation and security roles, allowing threads to select
one of each as needed.

The process abstraction is just one example. Persistent data access and
sharing plays a key role in OS abstraction design, and we need to avoid
complexity arising from combining old and new interfaces. Hence, we
need to consider the wide-reaching effects of changing the persistence
model on all aspects of the system, not just I/O interfaces.These hardware
trends give us an opportunity to design anOS around the requirements of
the target programmingmodel instead of trying tomold support libraries
around existing interfaces. While it is important that we provide support
for legacy applications, it is these applications that should be relegated
to support libraries; new applications built for the programming model
should get first-class OS support.
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in-memory data structures and global addressing The
need to place in-memory data structures front and center comes from
both the desire to reduce serialization overhead (Chapter 3) but also to
allow better sharing and direct use of distributed or persistent memory
(Chapter 2). As we discussed, the virtual address space does not work
for this purpose35 as it is ephemeral. Furthermore, sharing data with not 35 We will discuss single address

space operating systems later in
this chapter.

just other applications but other nodes and devices demands a large and
global address space of data to avoid the context problem. But we do still
need a mechanism to allow the organization of data at a large scale, the
coordination of that address space, and a method for naming data within
a global address space that is invariant of local context. The solution to
global addressing and data references makes up the bulk of the work
presented here, but the result is a system that can share data with a 100�
byte-level copy across nodes and between processes where the pointers
all mean the same thing.

pointers as a common language Data references are a fun-
damental part of encoding data relationships36. When we consider the 36 See Chapter 3.

implication of encoding data references within a truly global address
space, we find that we can treat references as a common language. If all
nodes, processes, and devices agree not only on names for data but also
how to name data, they can more easily share data and interoperate. In
fact, levels of the infrastructure that previously had no view into data
relationships can now gain additional insight when performing tasks.

This addresses the issues with RPC that we discussed in Chapter 3.
We can combine the code mobility of RPC with the flexibility offered
by DSM-like models in a global address space with invariant references
as a first-class abstraction. By imbuing data with fundamental identity
and pushing an understanding of data references into the OS and the
network, we can leverage aspects of content-based networks to reduce the
coordination typically required in a shared, distributed address space.The
programmer is then free to express their computation through references
to code to run on some references to data, instead of needing to serialize
and copy values for arguments. Today, developers are often forced to
implement functionality such as caching, prefetching, and manual data
movement in preparation for some operation. With data references as a
common language between the OS, the network, and applications, we
can move this infrastructure-level functionality out of the application
and back into the infrastructure where it belongs.

persistence is sharing In Chapter 2 we discussed how persis-
tence is getting closer to compute in multiple ways. A natural approach
would be to focus on orthogonal persistence, in which applications write
data and it is automatically persisted. However, mere orthogonal persis-
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tence misses out on a more fundamental relationship with distribution of
memory and applications. Our view is that persistence and distribution
are two sides of the same coin—we saw previously that both are plagued
by the same problems of overhead, and both domains are seeing dra-
matic improvements in performance. In a data-centric OS, persistence
is sharing, and the problems of persistence37 can be solved in terms of 37 Including, but not limited to,

failure-atomicity and durability.atomicity and transactions38.
38 As we will discuss in
Section 8.3.

4.3 twizzler: a point in the design space

The consequences of meeting the requirements of these hardware and
software trends define a bounded design space for data-centric operating
systems that we layed out above.We have chosen a point in that space and
built Twizzler, our approach to providing applications with efficient and
effective access to new, “far out”memory hierarchies.The core philosophy
of Twizzler is that any context necessary to interpret some data must
be stored with that data. In the following chapters we will discuss our
design choices, including our global address space, invariant pointers,
and Twizzler OS services and libraries, and see how this philosophy,
when combined with the ideas behind a data-centric operating system,
enable us to build an efficient implementation of a modern approach to
programming model design.

Twizzler is a stand-alone kernel and userspace runtime that provides
execution support for programs. It provides, as first-class abstractions, a
notion of threads, address spaces, persistent objects, and security contexts.
A program typically executes as a number of threads in a single address
space, providing backwards compatibility with existing programming
models, into which persistent objects are mapped on-demand. Instead
of providing a process abstraction, Twizzler provides views (Sections 5.3
and 7.2.1) of the object space, which formalizes the notion of ephemeral
context within ourmodel by allowing programs tomap objects for access,
and security contexts (Section 7.3) which define a thread’s access rights to
objects in the system. Twizzler provides invariant pointers (Chapter 6)
in a low-coordination global address space (Chapter 5) for programs, as
well as primitives to ensure crash-consistency (Section 8.3). The thread
abstraction is similar to modern operating systems; the kernel provides
scheduling, synchronization, and management primitives. Figure 4.1
shows an overview of the system organization and how different parts of
the system operate on data objects.

Twizzler’s kernel acts much like an Exokernel [44, 67], providing suffi-
cient services for a userspace library OS, called libtwz, to provide an
execution environment for applications. The primary job of libtwz is to
managemappings of persistent objects into the address space (Section 5.3)
and deal with invariant pointers. Twizzler also exposes a standard library
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figure 4.1
Twizzler system overview. Appli-
cations link to musl (a C library),
twix (our Linux syscall emula-
tion library), and libtwz (our
standard library). Through musl,
they may act on in-memory data
with POSIX interfaces, though
we expect Twizzler applications
to operate directly on in-memory
data with the supplied Twizzler
abstractions.

that provides higher level interfaces beyond raw access to memory. For
example, software that better fits message-passing semantics can use
library routines that implement message-passing atop shared memory.
Twizzler’s standard library provides additional higher level interfaces,
including streams, logging, event notification, and many others. Ap-
plications use these to easily build composable tools and pipelines for
operating on in-memory data structures without the performance loss
and complexity of explicit I/O.

4.4 a historical look

Twizzler’s design is shaped by fundamental OS research [19, 27, 42–
44, 67, 73], which, while approaching similar topics as we described
previously, often did not consider all design requirements we discussed
simultaneously, nor did they have a view of hardware trends that we do
today, resulting in an incomplete picture. Recent research on building
in-memory persistent data structures [24, 35, 39, 58, 80, 123], often focuses
on building data structures that provide failure atomicity and consistency
for only persistence. In contrast, we explore how hardware trends affect
programming models and OS abstractions on the whole. We draw from
recent work on providing OS support for NVM systems [16], as these
align well with in-memory sharing data structures, and work providing
recommendations for NVM systems [84], integrating object-oriented
techniques and simplified kernel design to provide high-performance
OS support for applications running on a single-level store [4, 108].
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memory and object model Multics was one of the first systems
to use segments to partition memory and support relocation [9, 31]. It
used segments to support location independence, but still stored them
in a file system, requiring manual linkage rather than the automated
linkage in Twizzler. Nonetheless, Multics demonstrated that the use of
segmenting for memory management can be a viable approach, though
its symbolic addresses were slow.

The core of Twizzler’s object space design uses concepts fromOpal [19],
which used a single virtual address space for all processes on a system,
making it easier to share data between programs. However, Opal was
a single-address space OS, which is insufficient for a full data-centric
system39, and, while it resulted in a speedup of data transfer and sharing 39 As we will soon see.

as well as interfacing with devices, it did not address issues of file storage
and name resolution. It also still required a file system, since there was no
way to have a pointer refer to an object with changing identity, whereas
our approach of late-binding for pointers removes the need for an explicit
file system. Other single-address space OSes, such as Mungi [54], Neme-
sis [101], and Sombrero [116], show that single address spaces have merit,
but, like Opal, do not fully align with software and hardware trends
today; in particular, how the use of fixed addresses results in a great
deal of coordination that is unnecessary in our approach. OSes such as
HYDRA [125] provide functionality similar to invariant pointers; how-
ever, in Twizzler, we extend their use from procedures-referencing-data
to a more general approach. Furthermore, they required heavy kernel
involvement, an approach incompatible with our design goals.

Single-level stores [33, 107, 110] remove the memory versus persistent
storage distinction, using a single model for data at all levels. While well-
known, “little has appeared about them in the public literature” [107],
even since the EROS paper. Our work is partially inspired by Grasshop-
per [33], AS/400, and orthogonal persistence systems, but while these are
designed to provide an illusion of persistent memory, Twizzler is built for
both real NVM and distributed sharing, and focuses on providing a truly
global object space with global references without cross-machine coor-
dination. Clouds [32] implemented a distributed object store in which
objects contained code, persistent data, and both volatile and persistent
heaps. Our approach uses lighter-weight objects, allowing direct access
to objects from outside, unlike Clouds. Software persistent memory [51],
designed to operate within the constraints of existing systems, built a
persistent pointer system using explicit serialization without cross-object
references, in contrast to Twizzler.

Recently, several projects have considered the impact of non-volatile
memories on OS structure. Bailey, et al. [4] suggest a single-level store
design. Faraboschi, et al. [46] discuss challenges and inevitable system
organization arising from large NVM, and we follow many of their rec-
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ommendations. The Moneta project [16] noted that removing the heavy-
weight OS stack dramatically improved performance. While Moneta
focused on I/O performance, not on rethinking the system stack, we
leverage their approach to reduce OS overhead as much as possible, even
when the OS must intervene. Lee and Won [76] considered the impact
of NVM on system initialization by addressing the issue of system boot
as a way to restore the system to a known state; we may need to include
similar techniques to address the problem of system corruption.

object model IBM’s K42 [73] inspired the high level design of
Twizzler. The object-oriented approach to designing a micro or exok-
ernel used in K42 is an efficient design for implementing modular OS
components. Like K42, Twizzler lazily maps in only the resources that an
application needs to execute. Similar techniques for faulting-in objects
at run-time have been studied [57]. Communication between objects in
Twizzler is, in part, implemented as protected calls, similar to K42.

Emerald [65, 66] andMesos [55] implemented networked objectmobil-
ity, which we can also support. Emerald implemented a kernel, language,
and compiler to allow objects mobility using wrapper data structures to
track metadata and presenting objects in an object-oriented language,
impacting performance via added indirection for even simple operations.

The Twizzler object model was shaped by NV-heaps [24], which pro-
vides memory-safe persistent objects suitable for NVM and describes
safety pitfalls in providing direct access to NVM. While they have lan-
guage primitives to enable persistent structures, Twizzler provides a
lower-level and uninhibited view of objects like Mnemosyne [123], allow-
ing more powerful programs to be built. Languages and libraries may
impose further restrictions onNVMuse, but Twizzler itself does not. Fur-
thermore, Twizzler’s cross-object pointers allow external data references
by code, whereas NV-heap’s and DSPM’s [106] pointers are only internal.
Existing work beyond Multics on external references shows and recom-
mends hardware support [102, 124], but provides a static or per-process
view of objects, unlike Twizzler, limiting scalability and flexibility.

Projects such as PMFS [38] and NOVA [127] provide a file system for
NVM. Twizzler, in contrast, provides direct NVM access atop of a key-
value interface of objects. Although Twizzler does not supply a file system,
one can be built atop it. While NOVA and PMFS provide direct access to
NVM, NOVA adds indirection with copies. Both use mmap (which falls
short as discussed above) and, unlike Twizzler, require significant kernel
interaction when using persistent memory.

Our kernel that “gets out of the way” is influenced by systems such
as Exokernel [44] and SPIN [10], both of which drew on Mach [1]. In
Exokernel, much of the OS is implemented in userspace, with the kernel
providing only resource protection. Our approach is similar in some
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respects, but goes further in providing a single unified namespace for all
objects, making it simpler to develop programs that can leverage shared,
in-memory state that can nonetheless persist. In contrast, SPIN used
type-safe languages to provide protection and extensibility; our approach
cannot rely upon language-provided type safety since we want to provide
a general purpose platform.

4.4.1 Classifying Operating Systems

Broadly speaking, operating systems can be classified several ways—
how they handle and abstract persistence, how they handle inter-process
communication, how they access data objects, and how they protect data
and processes. We will be looking primarily at single-level stores, since
such an interface is a natural fit for in-memory data structures.

4.4.1.1 Single Level Stores and Single Address Space Operating Systems

Closer persistence, and NVM in particular, allows the implementation of
a true single-level store, as has been suggested before [4]. Classic single-
level store systems, such as AS/400, Cricket [110], Grasshopper [34], and
EROS [107], hide the traditional two-level storage hierarchy of DRAM
and disk behind the illusion that all data is in memory. Since these sys-
tems present merely the illusion of persistence through memory, they
can be broken up into how they provide that illusion. AS/400, while
presenting a single-level store interface for data access and manipulation,
requires explicit OS calls to ensure persistence of data, while the others
provide implicit persistence [34]. Hardware trends indicate that explicit
kernel calls to persist data are unacceptable due to their latency40. The 40 And implicit kernel-provided

persistence without application
control can result in hazards [29].

other systems follow different strategies for implementing implicit per-
sistence, including checkpoints to disk in EROS and completely invisible
persistence in Grasshopper. Both of these approaches are inappropriate
for a data-centric system, since consistency must be more fine-grained
than checkpoints, and require some application involvement.

Single address space operating systems (SASOSs) and single-level
stores are fundamentally entwined, where single-level stores are made
easier to implement in a SASOS style, and SASOSs typically present a
single-level store interface. Opal [18], Mungi [54], and Sombrero [86] are
built for large virtual address spaces, and tie persistent objects to virtual
addresses for the duration of their lifetimes. This approach has merit for
implementing invariant pointers, but falls short in some respects. Firstly,
modern CPU address spaces are not large enough to address all of the
data as object storage grows and scales beyond a single machine without
increasing pointer size and page-table depth, both of which we would
like to avoid. Secondly, the management cost of persisting the virtual
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mappings outweigh the benefits; since pointers are stored directly, chang-
ing the address space (and therefore updating all pointers associated with
deleted or moved objects) becomes intractable. Opal, in addition, still
required a filesystem, which is a needless layer of abstraction handled
within the OS. Other SASOSs [54, 86, 101] also do not take into account
NVM, and so do not address the issues described above. HYDRA [125]
also provides similar location independent pointer references, but these
were used primarily for procedures referencing data, not references to
persistent or shared data, and required heavy kernel involvement.

4.4.1.2 Micro, Exo, Multi, oh my!

Fundamental research into kernel design plays a large role in our de-
sign decisions. The three kernel design philosophies we will discuss are
Microkernel [1], Exokernel [44], and Multikernel [6]:

• The Microkernel approach limits the responsibilities of the kernel
to providing thread scheduling, process separation, and message
passing primitives. It allows userspace servers to implement most
of the OS functionality applications require. While this is advanta-
geous in moving kernel functionality into userspace, it often does
so by message-passing. We have the ability to do IPC on persistent
objects through shared memory, so our systems should rely on this
approach instead. Additionally, message passing in microkernels
typically involves numerous kernel invocations, which hamper
persistent and distributed data access.

• Exokernels avoid as much operating system abstraction as possible,
choosing instead to only handle the bareminimum responsibilities
needed for securely multiplexing in-kernel. Exokernels typically
involve a user-space library operating system (libos) that provides
other functionality. Unlike the microkernel approach, these often
involve procedure-based IPC [44, 74] and present raw physical
resources to userspace instead of virtualized ones. While the re-
duced level of message passing is advantageous in our expected
architecture, the direct presentation of physical resources to ap-
plications presents an unnecessary complexity for persistent data
access, and the lack of abstraction for hardware is similarly costly
for security and ease of system programming.

• The Multikernel approach [6] considers each NUMA domain or
each individual core as separate and running a full kernel, with
little shared state between instances.While this approach hasmerit
for the distributed nature of a single machine, it does not consider
how access to persistent, shared memory could improve applica-
tion and system design and performance. We take this approach
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into consideration in our design. However, our above observations
suggest that the multikernel approach does not go far enough—
every programmable device in this system needs to be treated as a
separate system instance, more like LegoOS [105], which we take
inspiration from41. Finally, multikernels do not address making 41 Though we focus more towards

constructing data that can be
shared and positioned within a
global address space.

hardware see a uniform object space, nor do they address the
problem of invariant pointers in a global address space.

4.4.1.3 Access Control and Capability Systems

Our discussion thus far has not fully addressed the issue of data protec-
tion. In a world where hardware devices are free to act on shared global
memory with the autonomy that we predict here, protecting data is a
significant issue from the perspective of OS design. So far, the hardware
solutions available to us for implementing access to shared memory en-
able protection as well though the IOMMU, whose original design was
to both protect memory from hardware and enable full device virtualiza-
tion [83]. We can leverage this hardware to apply security enforcement
as well as a coordinated mapping of objects within a fault zone.

While the enforcement is done through hardware, not the operating
system42, we can still separate mechanism and policy. The users and sys- 42 A necessary consequence of

removing the kernel from the
data path!

tem make the policy, while the OS interprets the policy, verifies it against
a set of requirements and properties, and then programs the hardware
to enforce the guarantees. This means the kernel must have a way of
verifying access control to an object during a fault. We look to capability
systems for solutions due to their common use in single-level stores and
SASOSs, and because they provide better least-access properties [87],
which is important when hardware devices and applications can cause
irreparable damage to persistent data with normal memory accesses.

4.5 conclusion

The data-centric approach has the potential to improve performance,
simplicity, and efficiency. The design space we described in this chapter
is large, but at its core, it has a simple idea: data is the center of program-
ming, and placing data in a global address space can alleviate the context
problem. While prior OS research has approached some of these ideas,
rarely are they all combined and viewed alongside with our analysis of
modern hardware trends. Now that we have gotten the trends, motiva-
tion, and backstory out of the way, the next few chapters will focus on
design and implementation details for Twizzler.
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A GLOBAL ADDRESS SPACE

Hollowed out,
clay makes a pot.
Where the pot’s not
is where it’s useful.
Cut doors and windows
to make a room.
Where the room isn’t,
there’s room for you.
So the profit in what is
is in the use of what isn’t.

—Tao Te Ching, Lao Tzu,
translation by Ursula K. Le Guin

synopsis This chapter will describe the method by which Twizzler
manages a global namespace, starting with how we define memory objects,
how we name data within the space, and how we avoid coordination when
assigning object IDs. We will then discuss object ID collision, and the prob-
abilistic arguments therein. Finally, we will discuss two implementation
details about how we provide software and hardware access to data in the
global address space on current hardware.

Constructing a global address space of all data means that any piece
of data must be, in principle43, nameable from any context. As such, any

43 The ability to name a piece of
data is disconnected from the
rights to access that data.
Furthermore, discovery of a name
can also limit an application’s
ability to name data in practice,
even if in theory it can name any
data in the address space. These
topics will be discussed further in
Section 7.3.

identification of data will need fairly long names if it is to contain all
data within a possibly large system. It is important to note here that I am
using the term “name” to refer to a single unique identity within a global,
authoritative naming scheme. I am not talking about, for example, C
strings or a path. In addition to naming data, a global address space will
need a mechanism to ensure that names are in fact unique.

5.1 memory objects

To address these problems, Twizzler organizes data into objects. Each
object is identified by a unique 128 bit object ID. Objects provide con-
tiguous regions of memory that organize semantically related data with
similar lifetimes and permissions. Applications access objects via map-
ping services (discussed later in this chapter) by mapping each object
into a contiguous range in the address space, though the address space
itself may be densely or sparsely mapped. Objects can be anywhere from
4 KiB, the size of a page, to 1 GiB; the upper bound on object size is an
implementation choice, and not fundamental to the design.

An object, from a programmer’s perspective, is flexible in its contents—
for example, it could contain anywhere from a single B-tree node to the
entire B-tree. Often, an object would contain the entire tree, since the
entire tree is typically subject to the same access semantics by programs,
and there are overheads associated with objects that can be amortized
over larger spaces. Data and data structures that are too large for one
object or require different access permissions can span multiple objects
with references between them.

35
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root object

data object data object data object

figure 5.1
Using a root object as an index
to list multiple data objects that
can be viewed logically as a
contiguous block of data.

Via objects, we gain a mechanism to name data. Since objects have a
maximum size, we can simply index into them at a byte level and form
a name of a piece of data within object X as a tuple of (X,n) for an n

byte offset into the object. If all object IDs are unique, which we will
discuss later in this chapter, then the tuple fits our requirement for an
authoritative name.

One might question the decision to name data via a byte offset instead
of a richer set of semantics. Our reasoning is based around the level of the
system we are currently working with. The basic construction of a global
address space with fixed-size object IDs and offsets is designed to be
an underlying component of a richer, higher level API. Indeed, even our
notion of invariant references that we will discuss in the next chapter is a
“low level” mechanism. Nothing prevents higher-level APIs and models
from being built atop our lower level models—in fact, we plan for that!
The low level address space construction is designed to be useable across
a variety of languages and environments, not to mention its intended use
by hardware devices.

objects express locality The primary reason that Twizzler or-
ganizes the global address space into objects instead of simply providing
a large, 192 bit44 address space for all data is that it is useful to chunk the 44 This number comes from the

object ID size (128 bits) plus
64 bits (for alignment) of an
offset into an object.

address space. We will see one major application of chunking in the next
chapter (invariant pointers), but there are several other reasons we use
objects. First, allowing the kernel to operate on objects instead of byte
ranges dramatically simplifies the implementation and allows APIs and
services to operate on whole objects at a time. One can think of this as
the same underlying reason that virtual memory mappings operate on
pages and not on bytes.

Objects additionally enable the programmer to implement a direct,
logical expression of locality. The ability to group data as either seman-
tically related, access-rights-equivalent, or as “likely to be used at the
same time” is fundamental to systems design. Programmers often group
data for performance reasons like improving cache hit rate, or choose
explicitly to separate items to avoid false sharing. Providing a logical
expression of locality through objects enables these kinds of designs that
programmers often choose.
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data object data object data object

next object’s ID, metadata

figure 5.2
Similar goals as in Figure 5.1, but
here we do away with the index
object.

chaining objects The 1 GiB maximum object size may seem
quite limited, but this may be because it is natural to think that they are
Twizzler’s analogue to files in Unix. This is not the case—they are more
similar to pages. If one wanted a file abstraction in Twizzler, wherein
the size of the file can grow largely without bound, we can simply chain
multiple objects together. Figures 5.1 and 5.2 show some possible schemes
for accomplishing such chaining, wherein we either form a linked list of
objects (which would be effective for small, linear-accessed objects) or
have an index object that provides a list of data object for this “file”. A
variety of mechanisms are possible, ranging from those depicted here, to
nesting such solutions and forming an “indirect block” style of tracking
data. Since the minimum object’s physical size is 4 KiB, the overhead of
having extra indexing objects is low.

5.2 object ids

We already discussed above that object IDs are 128 bits in size, but we
should take a moment to discuss this choice, along with how IDs are
allocated. One aspect of our global address space we haven’t discussed
is coordination on IDs—that is, when creating a new object, we must
assign it an ID, but where does that ID come from?

One solution is via a centralized mechanism—some server hands out
IDs when asked. The trouble here is scalability: that centralized server
will be quickly overloaded. Furthermore, the stated aim of our system is
to allow devices and nodes to act more independently to enable more
concurrency. Yet a centralized solution would force them all through
this single bottleneck. Another similar solution would be a federated ID
system, where we allocate ranges of IDs to a set of centralized allocators,
similar to MAC addresses. While a federated approach alleviates the
problem somewhat, it still has scalability problems and requires some
out of band coordination ahead of time.

Part of the reason we selected a large ID space in the first place is to
make it possible to assign IDs without any coordination. To ensure object
ID uniqueness, we assign IDs by randomness. As long as we can ensure
a high enough chance of avoiding collision in the ID space, this method
is scalable and fast.
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We employ a probabilistic argument for avoiding collisions in the
object ID space. Since object IDs are generated randomly, we can model
object IDs as an occupancy problem in a space of N = 2128 bins. Thus
the probability of collision is [88]:

1− e− m ( m −1)/2 N

# of objects

# of object IDs

If a system were to create millions of objects per second over the
course of hundreds of years, the probability of ID space collision is ap-
proximately 1 in 107. However, such a system is all but guaranteed to
suffer hardware errors that flip bits45 in that time frame, and so an ID 45 Take DRAM bit error from

cosmic rays, for example.space collision is dramatically more likely to be sourced from a hard-
ware malfunction46. Further, the ID space could be expanded to 256 bits, 46 This is a common comparison

when considering probability of a
randomized computer
process [56].

which would dramatically reduce the chances of collision.
The reliance on randomized ID allocation is the primary reason we

chose to make our object ID space so much larger than some previous
approaches [5, 97]. Consider that if N = 264 bins, the probability of
collision with just one billion objects is around 2�. Increasing m to one
object per person on earth47 brings the collision probability up to nearly 47 At time of writing, anyway.

75�. Of course such an ID space is usable if the ID are allocated via
coordination with a centralized allocator, but if we wish to allow object
ID creation at scale, avoiding coordination is vital48. These alternative 48 As we will discuss in the next

chapter, some of these previous
approches chose to put up with
coordination and centralization
because of the way they encoded
their references. Twizzler uses a
different method that allows the
ID space to be much larger.

approaches with smaller ID spaces lead to problems when sharing, since
moving an object from one node to another requires either coordination
or application-specific fixup operations to avoid collisions.

5.3 mapping back to virtual memory

While virtual addresses are the wrong abstraction for data access in a
data-centric system, modern hardware provides (and often requires) the
use of virtual address hardware that we can leverage for protection and
isolation, adding additional ephemeral state. Often these virtual address
spaces are the only method for applications to access memory. Thus
Twizzler uses virtual memory hardware to provide a data object access
mechanism to programs.

Twizzler defines objects called “views”, which define the current layout
of the virtual address space49. Twizzler provides access to data objects 49 Among other things, see

Chapter 7.by mapping them into the virtual address space behind-the-scenes (via
libtwz). The view object contains structures to define the layout of the
virtual address space which the kernel reads and uses to program the
MMU accordingly.
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figure 5.3
Layout of a view object. The
kernel consults the view object’s
mapping on page-fault, and
maps in the requested objects at
the appropriate location in the
virtual address space.

Figure 5.3 shows how view objects lay out the address space of any
threads running inside that particular view. View objects are manip-
ulated by userspace and interpreted by the kernel. When applications
map objects, they update the view to specify that that object should be
addressable at a specific location. On a page-fault, the kernel reads the
view and maps the object at the requested location. The view object is
laid out like a page table, where each entry in the table corresponds to
a slot in the virtual address space. Each table entry contains an object
ID and requested protection bits to further protect objects atop access
control mechanisms, similar to PROT_* in mmap.

When a page-fault occurs, the fault handler tries to handle the fault
by either doing copy-on-write, checking permissions, or by trying to
map an object into a slot if the view object requested one. If it cannot
handle the fault, e.g. due to a protection error or an empty entry in the
view object, it elevates the fault to userspace where libtwz handles it,
possibly by killing the thread, or possibly by mapping an object if the
slot is “on-demand”. This is similar to userspace paging systems [1, 53].
When the kernel maps an object into a slot, it updates the address space’s
page tables appropriately.

Note that the use of virtual memory hardware and temporary object
mapping into an ephemeral space does not mean that we aren’t using
a global address space. In fact, in the next section we’ll discuss another
non-global address space that we use. Instead, think of these address
spaces as implementation quirks for specific hardware. On x86, the use
of virtual addressing is all but required—if we had other hardware and
addressing designs, we would have a different layer here for providing
actual object access. Finally, applications can ignore most of the libtwz
mapping work, since they still refer to data via the object ID and offset
tuple.

5.4 a logical address space

The interface presented to hardware must enable interaction with a het-
erogeneous memory system and support the abstraction of an object space
rather than a collection of flat memory spaces. Unlike applications, hard-
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ware has no need for a global address space. Rather, hardware must
have the ability to transfer large chunks of objects to, from, and around
memory, access memory words, and must be able to handle access to
different types of memory, preferably in a way that is largely transparent
to applications.

It’s important to note that here when I’m talking about hardware, I am
drawing an important distinction between the software (or firmware)
running on a hardware device, and the hardware itself. The former I’m
grouping in with software in general, as in the limit, we want that soft-
ware or firmware to interact with data and other applications just as any
other piece of software might. By contrast, the hardware is the substrate
upon which the software runs. Hence while software sees and interacts
with a global address space, the hardware sees but wires coming out to
electrically interact with other components.

Both software and hardware must have a way of translating a name for
some piece of data into a physical address. The software’s method is to
rely onmapping functionality provided by the hardware, thus kicking the
can down the road. The hardware must therefore know how to translate
an object ID and offset into physical memory. This mapping may change
frequently as the OS changes allocation of physical pages to data (e.g.,
to persist a piece of data). Hardware need only know the mappings
for a short time, and need not even care about the “canonical” name
for the object or piece of data—it simply needs to know how to access
data in memory for a single operation. In contrast, software must have
longer-term mappings, and must be able to support data shared between
threads, potentially mapped into the threads in different places. Our
design must support appropriate abstractions for both software and
hardware, allowing software to name data while providing hardware
and the operating system with the ability to move that data into, out of,
and around physical memory, preferably with compatibility for existing
hardware functionality.

We use an additional abstraction that sits underneath the global ad-
dress space—a logical address space. The logical address space allows
hardware to address data without needing knowledge of the data’s physi-
cal location. Today, hardware must worry about emitting loads and stores
to physical memory, but in a world of heterogeneous physical memory,
the location of data is likely to change overtime. Ideally, this movement
will be transparent to software, with the exception of setting policy, but
for hardware, it cannot be. Requiring hardware to access a global ob-
ject space through a 〈object, offset〉 tuple is unnecessary overhead and
complexity—hardware need only ever access the “working set” of objects
currently undergoing computation. Thus, the logical address space maps
objects within it to physical memory pages, managed by the operating
system. This solves the heterogeneity problem by allowing hardware to
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Two-level translation scheme.
The top level maps objects in
virtual memory (defined by view
objects) to those in object-logical
space. The layout of the second
level address space is managed
by the kernel, since it is not user-
facing, and the permissions are
derived from a security context
object. The second level maps to
physical memory.

refer to data within objects instead of physical addresses, whose lifetimes
are much smaller than the objects, and doesn’t require hardware to emit
(likely large) addresses for the global address space.

While SASOSes are not a viable solution to the problem of persistent
pointers, they are a solution to implementing the logical object space.
Hardware, and the CPU, are directly connected, reducing the cost of
invalidation and coordination of an address space. Additionally, this ad-
dress space is intermediate and hidden from programs—a virtual address
is translated to the logical object space, after which the address is trans-
lated to a physical location (shown in Figure 5.4) by a second address
translation. The result is that all devices, including the lower level parts
of the CPU, can share a single map of current objects in the logical object
space. We implement this on current x86 hardware via a combination
of the IOMMU and the Extended Page Tables, and will discuss this in
more detail and how we use it to enhance security and low level kernel
implementation in Chapter 7.

5.5 conclusion

A global address space provides a way for us to organize all data, and
giving all data an authoritative name via an object ID and an offset allows
us to provide a substrate for building more complex semantics later.
Importantly, the uniqueness of object IDs and the isolated process for
generating them means that we can avoid coordination on organizing
the global ID space. As we will see, the choices of a large ID space that
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needs little coordination will play a big part of our solution to distributed
memory. But now we are left with a question: if we name data via a tuple
of an object ID and an offset, how do we implement an actual pointer?
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INVAR IANT REFERENCES

All problems in computer science
can be solved by another level of
indirection.

—David Wheeler

...except the problem of too much
indirection.

synopsis This chapter builds up the notion of data references within
the global address space discussed in the previous chapter by way of intro-
ducing the key abstraction that underpins Twizzler—the invariant refer-
ence. We will discuss the design and implementation of invariant references
along with several case studies and performance analyses.

Last chapter, we discussed how we can name any piece of data within
the global address space using a tuple of object ID and offset. However,
with a large object ID space and an offset value, the tuple is quite big
(192 bits). If we want to encode a reference to a piece of data, any pointer
needs to encode all that information. But our current virtual address
pointers are 64 bits wide, so we would be increasing our overhead over
virtual addresses by a factor of 3. Instead, Twizzler uses an invariant
pointer abstraction that reduces overhead and maintains pointer sizes at
64 bits while making it possible to refer to any data in the global address
space (thus, these pointers are inherently cross-object or inter-object),
and exposing object relationships to lower level parts of the system stack
that would traditionally be blind to such relationships.

6.1 implementation

The authoritative name for a piece of data as defined in the previous
chapter is,(

IO , N
)ID of object O

An offset into an object

To efficiently encode this tuple, we use indirection through a per-
object foreign object table (FOT), located at a known offset within each
object. The FOT is an array of entries that each stores an object ID, or a
name that resolves into an object ID, as we will see below, and flags. An
invariant pointer is thus a tuple,

(
f , N

)Index into the FOT

An offset into an object

43
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and an FOT entry is also a tuple,

(
IT , flags

)Target object ID

Flags for this FOT entry

The invariant pointer tuple is encoded into 64 bits by placing f into the
upper 24 bits and placing N into the lower bits, and the FOT entry tuple
is 256 bits wide. We can then recover the original tuple by performing an
FOT lookup. For example, if we have an invariant pointer in object O,
the lookup is:

(
IT , N

)
=

(
FO ( f ), N

)
(6.1)

Index into the FOTFOT Index Operation

Target object ID

An offset into an object

This provides us with both large offsets and large object IDs, since
the IDs are not stored within the pointer itself. If an object wishes to
point to data within itself (an intra-object pointer), it stores f = 0 in
the invariant pointer. When dereferencing, Twizzler uses f as an index
into the FOT, retrieving an object ID. The combination of a FOT and
an invariant pointer logically forms an authoritative name, as shown
in Figure 6.1 and Equation 6.1. Since the FOT is a per-object structure
and is stored within that object, objects are self-contained and all context
needed to interpret pointers in an object is stored within that object.

Our design differs from existing frameworks [5, 9, 20, 27, 31, 102]
because of the indirection. Frameworks like PMDK store entire object
IDs within pointers, increasing pointer size and reducing flexibility by
removing the possibility of late-binding (discussed below). Additionally,
Twizzler extends the namespace of data objects beyond one machine,
as machine-independent data references are a natural consequence of
cross-object pointers. Existing solutions are limited in this scalability.
They either limit the ID space (necessary for storing IDs in pointers) and
thus resort to complex coordination or serialization when sharing, or
they require additional state (e.g. per-process or per-machine ID tables)
that must be shared along with the data, forcing the receiving machine
to “fix-up” references. Worse still, the fix-up is application-specific, since
the object IDs are within any pointer, not in a generically known location.
Our per-object FOT results in self-contained objects that are easier to
share, thus interacting better with remote shared memory systems.

Part of our motivation for indirecting pointers through the FOT was
to allow a large ID space without increasing pointer size. The density
of NVM and the disaggregation of memory and applications means
that we will be accessing data in a larger and larger address space, and
it is vital that our abstractions allow for a large enough ID space to
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Pointer translation via the FOT.
The pointer and the FOT are
both contained in the same
object (not shown). An FOT
entry of 0 indicates an “internal”
pointer.

cover these needs. Since our IDs are 128 bits and our offsets need to
support large objects, replacing pointers with a “fat pointer” style of
just object-id:offset would mean more than doubling pointer size,
whichwe found unacceptable. Other frameworks like PMDK, by contrast,
increase pointer size to 128 bits for each pointer by encoding pointers as
this tuple with 64 bit object IDs. The trade off is that our pointers take
a little more work to translate (as they require an FOT lookup), but in
return we keep pointers 64 bits while supporting a truly global-scale
address space. We will discuss space overhead later in this chapter.

flags The FOT entry’s flags field has bits for read, write, and ex-
ecute protections. The protections are requests; Twizzler implements
separate access control on objects. This allows some pointers to refer
to data with a read-only reference while others can be used for writing,
reducing stray writes (a single ID can repeat in the FOT with different
protections). The FOT entries also enable atomic updates that apply to
all pointers using that FOT entry.

late-binding Instead of requiring programmers to refer to objects
via IDs only, we allow names in FOT entries. These entries may contain a
pointer to an in-object string table that contains a name50. Names enable 50 The name pointer is packed

into the FOT entry by replacing
the target object ID and setting a
bit in the flags field to indicate
that this entry contains a name.

late-binding [31], a vital aspect of systems, allowing references to objects
which change over time, e.g. shared library versions. Names are passed to
a resolving function, specified in the FOT entry. Allowing a program to
specify how its names are resolved increases the flexibility of the system
beyond supporting Unix paths.

The implementation of naming is orthogonal to Twizzler’s design.
We allow a range of name resolution methods within the system stack
and allow objects to specify their own name resolution functions for
flexibility. For example, objects could be organized by both a relational
database and a hierarchical namer similar to conventional file systems.
Non-hierarchical file systems are well studied [2, 48, 49, 95, 96], but these
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struct Hdr {

inv_ptr: IPtr<i32>,

}

let vptr = hdr.inv_ptr.lea();

hdr.inv_ptr.store(vptr);

// *hdr.inv_ptr is also sufficient for dereference.

figure 6.2
Example Rust code that con-
verts an invariant pointer to a
dereferenceable form and back.

struct Hdr {

int *inv_ptr;

}

int *vptr = ptr_lea(o, hdr->inv_ptr);

hdr->inv_ptr = ptr_store(o, vptr);

figure 6.3
Example C code that converts
an invariant pointer to a derefer-
enceable form and back.

systems do not easily cooperate atop a single data space. Since Twizzler
uses a flat namespace as its “native” object naming scheme, it enables the
required cooperation.

pointer translation api Twizzler programs use pointer trans-
lation helper functions to handle the translations discussed above. The
particular API depends on the language used, and, while some languages
require translation functions to be written manually, these can be emit-
ted automatically with proper compiler support. When an invariant
pointer must be translated, the program performs the operation shown
in Equation 6.1 to convert the pointer into a virtual address, and a reverse
operation to convert a virtual address into an invariant pointer. The re-
sults can be cached to reduce translation calls. These functions efficiently
detect if a pointer needs no translation, allowing the compiler to emit
calls to these functions for pointers whose origin it does not know.

For an example in the C API, shown in Figure 6.3, if we have an object
(o), and a structure in the object containing a pointer to data, we use
ptr_lea to convert it into a current virtual address. This call returns a
virtual address that points to the requested data whether hdr->inv_ptr
is an intra-object or cross-object pointer. A similar operation on Unix
would require calls to open, manually written code to store a path to the
target object (whether or not it is different from o), and additional calls
to read or mmap to get the data—effectively reimplementing Twizzler’s
pointer framework with more complexity.

Writing a cross-object pointer is simple as well, as shown in Figure 6.3.
If vptrwill form a cross-object pointer, an FOT entry will be added to o if
needed, and the returned value of ptr_storewill be an invariant pointer
to the object pointed to by vptr for storage in o. Doing a similar operation
on Unix would require manual pointer serialization. Optimizations like
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those discussed above can turn these into no-ops in many cases. The
resulting simplicity of programs and enhanced object sharing is discussed
later, along with an analysis of performance.

A similar API is shown in Figure 6.2 for Rust, but here we gain the ad-
vantages of Rust’s type system. Not only is the target type of the invariant
pointer known, but it is differentiated from the virtual address that we
can convert it to (which has type &i32). We will discuss Rust in more
detail in Chapter 8, in particular how it can be used to avoid common
foot-guns that are present in the C version.

Although several existing persistent memory programming frame-
works [20, 102, 124] support similar APIs, they do not support per-object
indirection, they lack system-wide support, some increase pointer size
and do not always provide type-safe translation functions, and they do
not enable transparent use of pointer types in the language. Implement-
ing translations manually involves writing code like

(void *)((uintptr_t)foo + vbase),
resulting in brittle code that cannot be easily expanded to include cross-
object references.

6.2 evaluation

In evaluating Twizzler’s invariant pointer design, we investigated both
the usability of the invariant pointer model and the more measurable ele-
ments such as performance impact and storage overhead.We approached
the evaluation in two ways—porting existing software (SQLite [117]) and
writing new software for Twizzler.The latter demonstrates the true power
of Twizzler’s invariant pointer model and allows us to explore better the
consequences of our design choices without being constrained by legacy
designs. Porting existing software, however, has the advantage of demon-
strating the flexibility and generality of the model and environment.

We built two pieces of new software for Twizzler: a hash-table based
key-value store (KVS) and a red-black tree data structure. Each has differ-
ent characteristics and goals, and together they demonstrate the flexibility
that Twizzler offers in allowing simple implementation, nearly-free access
control, and the ability to directly express complex relationships between
objects. We then ported SQLite to Twizzler using our KVS and red-black
tree code and evaluated it using a YCSB [26, 45] driver, thus exploring
Twizzler’s model in a larger, existing program. The new software, along
with our SQLite port and microbenchmarks, are evaluated for perfor-
mance in Section 6.2.6, but let’s first consider their development and our
experiences with writing software in our model.
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Index (I0) Index (I1)Data (D0) Data (D1)

figure 6.4
Cross-object pointers in twzkv.
The index object contains point-
ers to keys and values, which
can reside in any data object. We
also support multiple indexes
to enable additional indexing
strategies and access control on
discovery.

6.2.1 Case Study: Key-Value Store

We implemented a multi-threaded hash-table based Key-Value Store
(KVS), called twzkv, to study cross-object pointers and our late-binding
of access control. Our KVS supports insert, lookup, and delete of values
by key, both of arbitrary size, and hands out direct pointers to persistent
data during lookup. During insert, it copies data into a data region be-
fore indexing the inserted key and value. We built twzkv in roughly 250
lines of C, in multiple phases to study how our system handles changing
requirements. Handing out direct pointers into data was trivial to imple-
ment with cross-object pointers, requiring only a call to ptr_lea during
lookup. The initial implementation maintains two objects, one for data
and one for the index. The complexity typically involved when storing
both index and data in a single, flat file is not justified in a program-
ming model where we can express inter-object relationships directly at
near-zero cost in complexity or performance. In our case, a pointer from
the index object to the data object (such as an entry in the hash table)
can be written with a single call to ptr_store. This, combined with the
simple requirements for an in-memory NVM KVS, resulted in a small
implementation that was nonetheless a usable KVS.

6.2.1.1 Extending Requirements

Next, we added functionality to protect values with access control. We
wanted to keep handing out direct pointers to data during lookup and
to keep twzkv a library (as opposed to a service). Meeting these goals
on an existing system would be difficult without adding significant com-
plexity, such as reimplementing a lot of Twizzler’s pointer framework or
implementing manual, redundant access control.

In Twizzler, implementing access control in twzkv involved having
the index refer to data in multiple data objects, assigning those objects
different access rights, and allocating from those objects depending on
desired access rights. We were able to implement this while preserving
the original code due to the transparent nature of Twizzler’s cross-object
pointers. Now, when inserting, the application indicates the data object
into which to copy the data, as shown in Figure 6.4.
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With multiple data objects, twzkv can leverage the OS’s access control,
minimizing complexity. Unrestricted data can go in D0 (Figure 6.4),
whereas restricted data can go inD1. Since each object has distinct access
control, a user can set the objects’ access rights, then decide where to
insert data according to policy. The indexes point to the correct locations
regardless of the access restrictions of the data objects, and twzkv still
hands out direct pointers, but a user that is restricted from accessing data
inD1 will not be able to dereference the pointer. A further extension is to
support secondary indices, as shown in Figure 6.4, enabling alternative
lookup methods and limiting data discovery with index object access
control. This extension is easy to implement on Twizzler, increasing our
implementation’s complexity only a small amount.

6.2.1.2 Comparison to Unix Implementation

To compare with existing techniques, we built a similar KVS using only
Unix features (called unixkv). It also separates index and data, but it
must manually compute and construct pointers, requiring a significant
amount of programmer time to get right. Supporting multiple data ob-
jects was complex in unixkv, because we had to store and process file
paths in the index and store references to paths for pointers, increasing
overhead and code complexity by 36�—a lot for an implementation
with relatively few pointers—just to reimplement Twizzler’s support. The
extra complexity also included code to manually open, map, and grow
files, much of which Twizzler handles internally. Development time was
extended by bugs that were not present when developing twzkv arising
from the manual pointer processing. While twzkv gains transparent
access control, unixkv does not due to the lack of on-demand object
mapping and late-binding of security. Instead, unixkv needs to know
object permissions before mapping, a restriction that limits the ability to
reuse the operating system’s access control, something that twzkv could
leverage through late-binding on security (Section 7.3)51. Other frame- 51

unixkv could trap
segmentation faults to do this,
but that would be
application-specific, difficult, and
would reimplement Twizzler
functionality.

works like PMDK that do not integrate access control and late-binding
into their models have similar limitations.

6.2.2 Case Study: Red-Black Tree

To evaluate the process of writing persistent, “pointer-heavy” data struc-
tures, we implemented a red-black tree in C using normal pointers
(ramrbt) in 100 lines of code, and evolved it for persistent memory
in two ways: manually writing base+offset style pointers, as current sys-
tems require (unixrbt), and using Twizzler (twzrbt). Porting existing
data structure code to persistent memory will be common during the
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adoption of NVM, and much of the complexity therein comes from
dealing with persisting virtual addresses [82].

In developing unixrbt, we found 83 locations where we had to per-
form pointer arithmetic for converting between object addresses and
virtual addresses. Consider an expression such as

root->left->right = foo.
Inserting calls to translate this directly results in

L(L(root)->left)->right = C(foo),
where L converts to a virtual address and C converts back, which is heav-
ily obfuscated and took more development time than writing ramrbt in
the first place due to debugging.

We built twzrbt like unixrbt, annotating pointer stores and deref-
erences. However, unixrbt used an application-specific solution for
pointer management; if other applications wanted to use the data struc-
tures created by unixrbt, they would have to know the implementation
details of the pointer system (or share the implementation, thus reim-
plementing much of Twizzler’s library). Additionally, due to Twizzler
enabling improved system-wide support for cross-object pointers, these
transformations can be made automatic through compiler support.

Unlike twzrbt, unixrbt’s tree is limited to a single persistent object; a
limitation that prevents the tree from growing arbitrarily, does not allow
it to directly encode references to data outside the tree object, and does
not gain it the benefits of cross-object data references that were discussed
above for twzkv. Adding support for this to unixrbt would require
modifying the core data structures to include paths and significantly
altering the code, increasing its length by at least a factor of 2, whereas
twzrbt gets this functionality for free.

Another advantage of twzrbt is reduced support code compared to
unixrbt; unixrbt needed code to manage and grow files and mappings,
while we implemented twzrbt as simple data structure code with Twiz-
zler managing that complexity. The additional error handling code and
pointer validity checks in unixrbt—handled automatically in Twizzler—
increased development time and implementation complexity.

6.2.3 Porting SQLite

We ported SQLite to Twizzler to demonstrate our support for existing
software and to evaluate the performance of a SQLite backend designed
for Twizzler. We used our POSIX support framework, a combination
of musl and our library twix, to support much of SQLite’s POSIX use.
We took a modified version of SQLite called SQLightning that replaced
SQLite’s storage backend with amemory-mapped KVS called LMDB [23].
We chose this port because LMDB is implemented with mmap’d files as
the primary access method and hands out direct pointers to data as one
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would expect from an effectively designed NVM KVS52. Since LMDB’s 52 These are not invariant
pointers, however, unlike
Twizzler’s.

SQLightning port replaces the storage backend with calls to LMDB, we
ported SQLite to Twizzler by taking our KVS and red-black tree code and
implementing enough of the LMDB interface for SQLite to run using
Twizzler as a backend. Outside of the B-tree source file few changes were
needed for SQLite to run on Twizzler. We further ported our modified
SQLite backend to PMDK to compare directly with a commonly used
NVM programming library that supports persistent pointers.

We also ported a C++ YCSB driver [45], which required porting the
C++ standard template library (STL). Since we had already ported a
standard C library, the C++ STL was easily ported, demonstrating the
ease of porting software to Twizzler. We have also ported some existing
Unix utilities (such as bash and busybox), which largely require only
recompiling to run on Twizzler. Of course, to gain all of the benefits
of Twizzler, programs will be need to be written with NVM or data
disaggregation in mind (but this is true regardless of the target OS).

Our implementation of the LMDB interface corroborated our expe-
rience from the KVS case study: much of the complexity in storage
interfaces and implementations comes from the separation between
storage and memory. This has been studied before (as we discussed in
Section 4.4), but the hardware trends discussed in Chapter 2 change
the game significantly by allowing programmers to think directly via
in-memory data structures. The result is that interfaces like cursors in a
KVS become redundant. We implemented to this interface for LMDB,
but the functions were largely wrappers around storing a pointer to a
B-tree node and traversing the tree directly without separate loads and
copies. The result was an extremely simple implementation (500 lines
of code) that still met the required interface. Future software can use
Twizzler’s programming model to more effectively write software that
eschews the need for complexity forced by the two-tier storage hierarchy.

6.2.4 Case Studies Discussion

Although these implementations were simple, they represent the applica-
tions and data structures we expect in a data-centric system. Invariant
pointers we can directly use in our programming languages make com-
puting over persistent data almost transparent, allowing simple imple-
mentations that are nevertheless easy to evolve as requirements change.

Not only does twzkv have strong support for access control, it enables
concurrent use of databases via cross-object pointers. Applications can
load indexes for multiple databases without needing to worry about ad-
dress space layout and without writing complex pointer management
code that would be required by an implementation using mmap. We were
able to provide access control without a single line of code in twzkv
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dedicated to checking or enforcing access rights. Instead, we relied on
Twizzler’s built-in access control, a reuse not possible with other frame-
works that do not support late-binding of access rights and do not con-
sider security as part of their model. Twizzler thus removes the need for
applications to enforce and implement their own access control, which
increases the security of the system by divesting programmers from the
responsibility of getting the enforcement right. Similar functionality for
current systems would traditionally require separation of the library and
application into a client-server model, but that additional overhead is
unneeded here and inappropriate on a persistent memory system.

Although twzrbt and twzkv had different densities of pointer oper-
ations, twzrbt being “pointer-heavy” and twzkv being “pointer-light”,
Twizzler improved the complexity of both over manual implementation
and improved flexibility over existing persistent pointer methods. Using
a system-wide standardized approach to pointer translations not only
enables better compiler and hardware support, but it also improves inter-
operability; because they share a common framework, twzkv could use
the red-black tree code and data with ease, and even interact with the
SQLite database even though they were written separately without that
goal in mind. The position-independence afforded by this model enables
both composability and concurrency, while also simplifying program-
ming on persistent data to a natural expression of data structures.

6.2.5 Storage Overhead

One important consequence of replacing virtual address pointers with
invariant pointers is storage overhead. While our design choice to indi-
rect the pointer resolution through a per-object table means we can avoid
increasing pointer size53, we must consider the size of that table when 53 As we will see, this choice is

meaningful for performance
overhead.

considering the impact of invariant pointers. Of course, while a direct
comparison to virtual address pointers is somewhat inappropriate, as vir-
tual addresses are not invariant and thus do not have the same semantics
and power, we can use them as a baseline for comparing the increased
overhead factor of Twizzler versus a “fat pointer” style persistent pointer.

Fat pointers are present in, for example, PMDK [5], which includes an
address space of objects with 64 bit IDs, indexed with a 64 bit offset. Thus
a pointer in PMDK is 128 bits total, and the overhead relative to virtual
addresses is exactly 2×. However, PMDK’s ID space is much smaller
than Twizzler’s (64 bits versus 128 bits). As we discussed in Chapter 5,
the large ID space is vital and provides useful semantics that a smaller
space misses. Adjusting PMDK’s pointer model by increasing the ID size
brings it to 192 bits per pointer, with a relative overhead54 of Ff128 = 3. 54 Here Ff128 means “the

overhead factor of a fat-pointer
design with an ID space of
128 bits”.
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In Twizzler, the overhead relative to virtual addresses is entirely de-
pendent not on the number of pointers, but the number of FOT entries.
Each FOT entry is 256 bits in size, so the relative overhead is:

FT =
64Np + 256Nf

64Np
= 1 +

4 Nf

Np

Total # of pointers

Total # of FOT entries

Twizzler’s overhead factor

While the above relationship is useful for determining what the over-
head factor is, the ratio between the number of pointers and the number
of FOT entries is application dependent. Some applications will have a
large number of references within a small number of objects or will have
a lot of intra-object references, and thus will have a small overhead factor,
while another application may have a large number of outgoing refer-
ences per object. Anecdotally, the former has been far more common,
which makes sense—objects are a projection of logical locality into an ID
space, and thus an application with a large overhead factor is, inherently,
structuring its data without significant locality.

However, we can model some real data structures to better understand
how their overhead factors are influenced by different elements of data
structure organization. Figure 6.5 shows the overhead factors of Twizzler
and PMDK (or, more broadly, fat-pointer designs) with different choices
for object ID sizes and with different characteristics for data organization.
We generated random graphs using a stochastic process that selected
edges randomly with a bias towards edges that were between nodes that
were close in an ID space. Once the graphs were generated, the nodes
were assigned to object IDs in batches. The bias was present to model
organizing a graph with locality in-mind.

The generated graphs could be either dense (many edges per node) or
sparse (few edges per node), and the objects could be either numerous
and hold few objects, or there could be few objects that held many nodes.
Figure 6.5 shows that Twizzler’s per-FOT overhead is better than the fat-
pointer style in most cases, with the exception of having few nodes per
object and a spare graph. This correlates with the above equation. Some
rearranging shows that to beat the overhead factor of Ff128 = 3 one
needs two pointers per FOT entry. When an object has many outgoing
references to few objects, this threshold is quickly surpassed.

6.2.6 Performance

Our evaluation’s primary focus is on the benefits of the programming
model, showing new functionality with reduced complexity at an ac-
ceptable overhead. Nevertheless, there are many cases where we see
significant improvement (such as SQLite) because the programming
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Storage overhead of Twizzler
compared with PMDK at differ-
ent object ID sizes. PMDK, or
fat-pointer style references have
a constant overhead per pointer.
Note that Twizzler’s object ID
size is 128 bits, thus the clos-
est comparison is not baseline
PMDK, but instead PMDK 128.
In most cases, Twizzler has a
better overall storage overhead,
except in the pessimistic case
where many FOT entries are
needed.

model has less overhead, and our pointer design is space efficient and
fast to translate.

We measured the performance of our KVS and red-black tree, per-
formed microbenchmarks, and evaluated the Twizzler port of SQLite
against Linux (Ubuntu 19.10) instances of SQLite, SQLightning, and our
port of SQLite to PMDK. Tests ran on an Intel Xeon Gold 5218 CPU
running at 2.30 GHz with 192 GB of DRAM and 128 GB of Intel Op-
tane Persistent DIMMs. We compiled all tests against the musl C library
instead of glibc because Twizzler uses musl to support Unix programs.

All Linux tests used the NOVA filesystem [127] (a filesystem optimized
for NVM) on the NVDIMMs, mounted in DAX mode. This enabled
direct access to the persistent memory without page-cache interposition.

6.2.6.1 Microbenchmarks

Table 6.1 shows common Twizzler functions’ latencies, including pointer
translation (loading and storing) and mapping overhead. The overhead
shown for resolving pointers does not include dereferencing the final
result, since that is required regardless of how a pointer is resolved. The
first row shows the latency for resolving pointers to objects the first time.
Twizzler makes a further optimization by caching the results of trans-
lations for a given FOT entry. Each successive time that FOT entry is
used to resolve a pointer, the result of the original translation is returned
immediately, improving the latency as shown on the “cached” row of
Table 6.1. Note that the low latency of these results is expected; the per-
formance critical case of these functions’ use is repeated calls, and since
these operations are simple, they fit within the processor cache.
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Pointer Resolution Action Average Latency (ns)

Uncached FOT translation 27.9 ± 0.1

Cached FOT translation 3.2 ± 0.1

Intra-object translation 0.4 ± 0.1

Inter-object pointer store 17.2 ± 0.6

Intra-object pointer store 2.3 ± 0.1

Mapping object overhead 49.4 ± 0.2

table 6.1
Latency of common Twizzler
operations, including pointer
loading and storing, and object
mapping.

Twizzler translates intra-object pointers by first checking if the pointer
is internal and, if so, adding the object’s base address to it—the same
operation required for application-specific invariant pointers. The ex-
panded programming model offered by Twizzler makes this overhead
minor relative to the high costs for persistent data access on current
systems, which have high-latency for equivalent operations.

The pointer store operations shown in Table 6.1 measure the latency
of the ptr_store operation that is used to construct persistent data
references in Twizzler. While these operations are less common than
pointer loads, their overhead directly affects applications that perform
many updates to data structures. The most common pointer store op-
eration applications perform is internal (intra-object) pointer stores, in
which the overhead is minimal. Pointer store operations for external
(inter-object) references have slightly more overhead, since they need to
operate on the FOT.

We compared our pointer translation to Unix functions. Resolving an
external pointer with an ID corresponds roughly to a call to open("id"),
which has a latency of 1036 ± 15 ns. The comparison is not exact, of
course; the pointer resolution also maps objects, and the call to open

must handle file system semantics. However, the direct-access nature of
NVM results in pointer translation achieving the same goal as opening a
file does today. The pointer operations in Twizzler accomplish much of
the same functionality as the heavier-weight I/O system calls on Unix
with more utility and less overhead.

A more direct comparison is object mapping, which has low latency
compared to mmap (658.7± 12.7 ns—a 13.3× speedup) though the two
have similar functionality. Since mapping occurs entirely in userspace,
cache pollution is reduced. While both mmap and Twizzler’s mapping
require page-faults to occur before the data is actually mapped, this
overhead is similar in Twizzler and Unix, and so is not shown.

It is important to keep in context the latency of these operations, many
of which replace relatively heavy Unix operations in functionality in
Twizzler’s memory-accessmodel.Most of the equivalent Unix operations
require at least one system call, which is untenable for low-latency per-
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YCSB throughput, normalized
(higher is better). Twizzler out-
performs all other variants.

sistent storage. The mitigations for both Spectre [70] and Meltdown [78]
further motivate reducing system calls, especially with NVM, since they
further increase system call latency.

6.2.6.2 SQLite

We ran four variants of SQLite, three on Linux and one on Twizzler, and
compared their performance: “SQL-Native” (unmodified SQLite), “SQL-
LMDB” (SQLite using LMDB as the storage backend), “SQL-PMDK”
(SQLite using our red-black tree on PMDK), and “SQL-Twizzler” (our
port of SQLite running on Twizzler). SQL-Native was run in mmapmode
so that both it and SQL-LMDB used mmap to access data. We ran each
on the same hardware and normalized the results.

Figure 6.6 shows the three variants’ (and baseline) throughput under
standard YCSB workloads. The performance improvement of the LMDB
and Twizzler variants over SQL-Native is likely due to handing SQLite
direct pointers to data. However, in the Twizzler case we get an additional
benefit of operating on data structures directly while LMDB has an
abstraction cost.

Figure 6.7 shows the latency of queries on a one million row table.
This is common data processing—loading and then examining data in a
variety of ways. We measured the performance of calculating the mean
and median, sorting rows, finding a specific row, building an index, and
probing the index. SQL-Twizzler had similar performance to SQL-LMDB
and SQL-Native despite comparing its extremely simple storage backend
to optimized B-tree backends (that benefit from scan operations). As a
more direct comparison, SQL-Twizzler significantly out-performed SQL-
PMDK in most tests. PMDK’s pointer operations are more expensive
than Twizzler’s, requiring up to two hash table lookups per translation [5].
Additionally, PMDK’s pointers are 128 bits, while Twizzler does not in-
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crease pointer size. Increased pointer size results in significantly worse
cache performance, especially in a pointer-heavy data structure like a
persistent red-black tree.

6.2.6.3 Key Value Store

We compared twzkv to unixkv by inserting one million distinct key-
value pairs, followed by looking up each in-order. The inserted items
were 32-bit keys and 32-bit values, chosen to reduce the overhead of data
copying since we were focusing on pointer translation overhead. Both
were compared under two modes, single-data-object and multiple-data-
objects. Both KVSes translated between virtual and persistent addresses
when storing and retrieving data, but for multiple-data-objects, we allow
for storing the data in an arbitrary object.

Figure 6.8 shows the latency of lookup and insert, demonstrating that
not only is the memory-based index and data object structure that can
hand out direct data pointers sufficiently low latency to take advantage
of NVM, but the additional overhead of cross-object pointers is minimal.
Compared to unixkv, twzkv has minimal overhead in the single-object
case, and improves lookup performance in the multiple-object case. The
minor overhead in other cases comes with improved flexibility, simplicity,
and access control support (unixkv does not support access control).
Finally, multithreaded access on twzkv and unixkv did not improve
performance; despite the pointer translations, they ran at memory band-
width (for NVM).

6.2.6.4 Red-Black Tree

We measured the latency of insert and lookup of 1 million 32-bit inte-
gers on both unixrbt and twzrbt. The insert and lookup latency of
twzrbt was 528 ± 3 ns and 251.8 ± 0.5 ns, while insert and lookup



58 invariant references

Insert Lookup Insert (m) Lookup (m)
0

250

500

750

1000

N
an
os
ec
on

ds
unixkv
twzkv

figure 6.8
Latency of insert and lookup in
twzkv and unixkv. An “(m)”
indicates support for multiple
data objects. Both unixkv and
twzkv have similar latencies.

latency of unixrbt was 515 ± 2 ns and 213 ± 1 ns. The modest over-
head comes with significantly improved flexibility, as unixrbt does not
support cross-object trees, and less support code (unixrbt manually
implements mapping and pointer translations). Note that even though
there is lookup overhead in twzrbt, this overhead did not predict the
results of a larger program—the SQL-Twizzler port used this red-black
tree, and saw performance benefits over block-based implementations.

6.3 conclusion

We have discussed the design and implementation of invariant references
in Twizzler and demonstrated their power, flexibility, and low overhead.
Importantly, the implementation of invariant pointers in Twizzler means
that objects are self-contained and all context necessary to interpret
data in object is stored in that object. However, the ability to create
references in a global address space does not a full operating system
make. In the coming chapters, we will discuss the OS infrastructure
needed to realize our model, along with Twizzler OS services that enable
easier programming on the kinds of systems we are envisioning.
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Operating systems are like
underwear—nobody really wants
to look at them.

—Bill Joy

synopsis While the last two chapters have focused on perhaps the
most important parts of Twizzler—global addressing, memory objects, and
invariant pointers—there is still importance in understanding some of
the other operating system services. This chapter will discuss things like
ephemeral state management, controlling objects, threads, and security.

An operating system provides functions to userspace all in service of
enabling the application to operate on data by multiplexing the various
pieces of hardware in the system. Twizzler is no different, however it
leans towards a lighter hand—more like a microkernel—than, e.g., Unix.

Twizzler is started via a bootloader that loads the kernel and an initial
ramdisk (initrd) into memory. The initrd is a simple tar file containing
an initial set of memory objects to load. One of these is the init program,
which is started by the kernel, and is the only executable that the kernel
itself loads. After initializing the system, the kernel starts the init program,
which initializes the rest of userspace, including logging, paging, and
devices, before starting a shell.

7.1 object services

The kernel provides services for object management, including creating
and deleting objects. It maintains mapping information, such as which
objects are mapped into which address spaces, and common paging tasks
like map counts and usage statistics. If directly attached NVM is present,
the kernel manages mappings to NVM via a built-in mapping of object
pages to NVM pages. While not a filesystem, the kernel’s use of NVM
does manage allocation and mapping object pages to physical pages.

7.1.1 Copy-From

While it is possible for an application to just copy large amounts of data
from one object to another via memcopy55, this is inefficient for large data. 55 Or a better language’s

equivalent routines.To provide an efficient large-scale copy operation that takes advantage of
copy-on-write functionality, Twizzler exposes a copy-from system call.
This system call takes, as arguments, a target object ID and a list of source
specifications which contain:
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1. srcid: A source object ID.

2. src_start: A starting byte offset, interpreted as an offset into the
source object.

3. dst_start: A starting byte offset, interpreted as an offset into the
target object.

4. length: A length for the copy operation.

The kernel then copies data from the source to the target. If it can, it
makes use of full-page copies that require only changing mappings (and,
for persistent objects, stored object maps), and leverages copy-on-write.
If a full-page cannot by copied, the kernel does the byte-level copy on
behalf of the thread. Before doing the copy, the kernel locks the target
object and the source objects to avoid unexpected changes (though, this
behavior can be configured via flags).

7.1.2 Creation

Objects are created by the create system call, which returns an object
ID. The caller can specify two policy-level pieces of information about
the object: its lifetime and its backing-type. The lifetime may be either
persistent or volatile, and the backing type may be any type of physical
memory available on the system (or a default). The kernel must adhere
to the semantics of persistence or volatility, but may choose any backing
type it likes that implements the lifetime requirements56—the supplied 56 Even storing persistent objects

in DRAM and flushing them to
stable storage—see below.

backing type is merely a hint. In addition to the policy information, the
caller may supply a copy-from (see above) list that will fill the new object
with data before returning. If the list is empty, the created object contains
all zeroed memory, and any areas not covered by the copy-from list will
be zeroed. We will discuss in Chapter 8 more details on object lifetime
and the safety hazards involved in object creation.

7.1.3 Deletion

Objects are deleted via the delete system call. Like Unix’s unlink, ob-
jects are reference counted, which includes mappings in an address space.
Once the reference count reaches zero, the object may be deleted. During
deletion, an object may be optionally marked as “hidden”, causing new
mapping requests for this object to fail. We will discuss how applications
can directly interact with these reference counts in Chapter 8.
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7.1.4 External Paging

If the kernel is unaware of a requested object or does not have a requested
page in core, it will contact the userspace paging service. The pager is
started by init early on in the boot process and is allocated a special object
for which it shares read/write access with the kernel. This object is called
the pager queue, and is used to form a multi-producer, single-consumer
submission/completion queue pair. The kernel then communicates with
the pager by enqueuing requests and awaiting responses57. The pager can 57 The pager also gets a “pager to

kernel” communication pathway
via a second queue pair.

then handle paging requests and coordinate with the kernel on eviction.
Drivers are handled in userspace in Twizzler, so storage drivers can be
implemented as part of the pager via shared libraries for modularity.

The userspace pager is also how we can enable persistence and sharing
without needing NVM. Not only can the kernel issue requests to the
pager to flush pages to stable storage like a traditional microkernel might
be architected, but we can enable applications to communicate with the
pager to provide requests and hints as to ordering for flushes. Applications
can then communicate some transactional semantics to the pager to
allow for optimizations. Other strategies are also available, such as using
the higher bandwidth of modern SSDs to persist full application state
checkpoints at high granularity [122], or persisting objects in a similar
way. In all cases, however, the pager can provide mechanisms for the
kernel to evict, and for applications to persist, data to stable storage,
while maintaining a flexible strategy for doing so that can make use of
application semantics to optimize.

7.2 dealing with ephemera

Despite Twizzler’s focus on persistent data, many components of our
hardware and applications are built around ephemeral constructs. For
example, threads are ephemeral “moments of computation” that act on
persistent data, while the programs that they execute often expect some
ephemeral private data (e.g. the data segment and the stack). While
virtual addresses are the wrong abstraction for persistent data access,
modern hardware provides (and often requires) the use of virtual ad-
dress hardware that we can leverage for protection and isolation, adding
additional ephemeral state.

7.2.1 Views

Twizzler defines objects called “views”, which coalesce the state and
context necessary to support ephemeral constructs like threads and ap-
plication instances into Twizzler objects. A significant part of that state is
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ephemeral virtual address mappings (discussed in Section 5.3); Twizzler
provides access to persistent objects by mapping them into the virtual
address space behind-the-scenes (via libtwz). The view object contains
structures to define the layout of the virtual address space which the
kernel reads and uses to program the MMU accordingly. Figure 7.1 shows
how views “mesh” ephemeral threads with persistent data by providing
them a context to operate in. Since view objects are normal Twizzler
objects, they can be persisted, allowing us to recover application state
after power cycles.

By coalescing this ephemeral state into an object, we make it possible
for applications to manage it directly with minimal kernel involvement.
Avoiding the kernel is natural—all data access already does this in Twiz-
zler, so adding a separate kernel API to manage this state would add
complexity—and reduces the number of system calls needed when map-
ping objects. Additionally, avoiding the kernel necessitates an increased
address space management responsibility for userspace. For example,
executable loading and mapping is largely handled without the kernel.

Applications can add objects to a view with the view_set function.
The caller specifies a target object and a set of protections (see Chapter 6),
and a slot in which tomap the object. However, applications rarely invoke
this function directly—instead, libtwz provides a higher-level API to
allow applications to operate above the level ofmanuallymapping objects.
The standard library also provides access to other utility functions for
views (such as querying state, creating new views, and copying views).
These functions, by default, operate on a thread’s current view, but they
optionally operate on any other view object58, which allows Twizzler to 58 Given appropriate permissions,

of course.implement operations with semantics similar to fork and execve59.
59 And introspection and
debugging!

When threads add entries to a view object they need not inform the
kernel—when a fault occurs, the kernel will read the entry as needed.
However, when changing or deleting an entry, threads must inform the
kernel so it can update existing page table entries. We provide two system
calls for views. The become system call allows a thread to change to a
new view, which might be used to execute a new program or jump across
programs to, for example, accomplish a protected task. Twizzler’s access
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control system prevents this from happening arbitrarily. The second
system call is invalidate_view, which lets a thread inform the kernel
of changed or deleted entries.

View objects not only reduce kernel boundary crossings, but they also
improve the resumability of the system. After a power cycle, the OS now
has information on which objects were mapped and where, improving
the ability of threads to pick up where they left off. Additionally, view
objects facilitate the sharing of address spaces between threads, since they
can both synchronize on modifying a given view object and need not
duplicate information. Note that the particular contents of a view object
are system-specific. On virtual memory systems, one of their jobs is to
manage ephemeral virtual mappings, while on other architectures one
of their jobs may be to manage, e.g., segment tables. In all cases, views
provide a mechanism for managing ephemeral state while providing
enough context for threads to execute.

7.2.2 Threads

Twizzler provides a set of threading primitives for applications.Threads in
Twizzler are always attached to a view and one or more security contexts.
Threads may communicate with each other using shared memory and
can signal each other with a system call. Since everything in Twizzler is
an object, each thread has a state object associated with it. Signals can
be raised assuming the raiser has appropriate permissions on the state
object, and the state object contains information about the thread.

A key primitive in Twizzler is the thread-sync system call. This call
operates similar to futex(2) on Linux, except that it supports waiting
on and waking up a number of different words of memory simultane-
ously. Multi-word thread-sync is necessary to support select(2)-like
or poll(2)-like operations in a system where all data access is done with
memory semantics. Twizzler’s standard library exposes an API for event
handling that uses multi-word thread-sync, where objects may expose a
set of “events” that can be triggered and waited for. This is used in numer-
ous places to implement event handling for multiple communications
streams implemented in objects.

7.2.3 Program Instancing

Programs can be loaded and run as ELF objects specifically linked for
Twizzler. We provide a linker script that links program data into virtual
addresses that correspond to the first few view slots in an address space.
This way an ELF file can be loaded as a simple copy-from operation
from the ELF object into several new objects (e.g., a text, rodata, and
data object). Program components like thread-local storage, stack, and
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heap can also be created out of objects. Finally, Twizzler supports a fork-
like operation that copies a view object into a new view, remapping and
applying copy-on-write copy-from operations as needed.

7.3 security

Twizzler’s focus on memory-based objects requires that we design the
security model around hardware-based enforcement, where the MMU
checks each access. This design is inevitable in a data-centric OS, since
the kernel is not involved in every memory access. The kernel merely
specifies the access rights when mapping an object and then relies on the
hardware to enforce those rights with a low overhead.

A key design choice we make is late-binding on security. Applications
request access to an object with permissions that they desire; if they
access the object in only allowed ways (e.g., only reading a read-only
object), no fault occurs. This is because when we map an object (via
a view), the kernel is not immediately involved, and so cannot check
access rights for a particular access at the time the mapping is setup.
Performing an access rights check on time of first access does not make
sense either, as it associates a specific access (that might be allowed) with
a permissions error. For example, if a program reads object A, and that
program is allowed to read A, it should be allowed to perform the read
even if it requested read-write access to the object. This late-binding
enables simpler programs that need not worry about elevating access
rights through remapping data objects. Programs can make progress
without knowing in advance the permissions of the objects they might
access, thus enabling the reuse of the OS’s access control mechanism in
applications, as we saw in the previous chapter.

Threads run in a security context [12, 41, 79], which contains a list of
access rights for objects and allows the kernel to determine the access
rights of programs. Using these contexts, Twizzler is able to provide
analogues to groups and owners in Unix while providing more fine-
grained access control if necessary. Unlike past exploration into security
contexts, data-centric OSes offer an advantage in simplicity. A security
context abstraction in a Unix-like OS needs to maintain access rights to
a set of fundamentally different things, such as paths, virtual memory
locations, and system calls. Instead, Twizzler’s security contexts specify
access rights to an object via IDs instead of virtual addresses. This also
makes security contexts persistent, allowing us to use them as the primary
way we assign security roles to threads.
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7.3.1 Security Contexts and Page Tables

Previously, we discussed how view objects allow applications to specify
what objects they want mapped in, and with what protections. These
are merely requests, however. Of course if the thread does not have the
appropriate permissions the kernel will program the address translation
hardware appropriately. This presents a problem: since threads can attach
to a number of different security contexts, the number of different page-
table structures that the kernel needs to manage grows quickly.

Twizzler uses Intel’s Extended Page Table (EPT) technology60, which 60 Other architectures (and
AMD) have similar systems, but
Twizzler does not support them
yet.

is part of the virtualization extensions. The EPT allows a virtual address
to be translated by two separate page tables, and is commonly used to vir-
tualize the MMU in virtual machines. The first level, using normal MMU
page tables, translates a virtual address to an object-logical address—
typically with second-level address translation this is referred to as the
“guest-physical” address—and the second-level translates this to a physi-
cal address. We discussed this two-level scheme previously in Chapter 5,
but here we can use the functionality to gain security benefits.

Two-level address translation via the EPT enables Twizzler to split pro-
tection requests and access control permissions. At the top-level, Twizzler
applies the requested protections from the view maps without restric-
tion, and programs the EPT to enforce access control derived from the
currently active security context. Splitting protection and access control
is what allows applications to map objects in for whatever access mode
they would like without having to worry about first checking permis-
sions. Furthermore, by separating out the permissions enforcement from
ephemeral state and location mapping, we reduce the number of page
table structures the kernel needs to manage from O (nm) to O (n+m),
where n is the number of views andm is the number of security contexts.
Views and security contexts can also be switched out independently from
each other, which more closely fits the semantics of Twizzler.

Two-level mapping also greatly simplifies the design of the kernel.
Since mapping objects to physical memory is done at the second level,
page eviction is easy—the kernel can simply modify the shared page
tables stored per-object, which updates the translation for all views and
contexts on the system after appropriate coherence. Moving objects be-
tween DRAM and NVM is made easier because objects reside in a given
location within object-logical space regardless of where they are mapped
in virtual memory, so the kernel does not need to maintain back pointers
to update page table structures.
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7.3.2 Virtualization Hardware

Twizzler’s use of virtualization hardware for normal operation is a limi-
tation of existing processors. Intel does not have a mechanism for using
the EPT without switching on the entire virtualization system and run-
ning in VMX-non-root mode. In practice, the additional overhead from
running with virtualization is negligible because we do not need all the
protection of a traditional virtual machine and so we can switch much of
it off. Because Twizzler’s kernel is its own guest, we can avoid much of the
overhead introduced by VM exits necessary in lower-trust VM models.
For example, Twizzler’s kernel is allowed to modify the EPT structures
itself, despite being virtualized, and modern processors contain exten-
sions that allow the guest to switch out EPTs itself and handle EPT faults
without triggering a VM exit.

This pairs nicely with using the IOMMU61 as well—since EPT struc- 61 As much as the IOMMU is able
to “pair nicely” with anything.tures on Intel can be reused in the IOMMU, we can apply security con-

texts to drivers as well, making driver code less of a special case. For
example, Twizzler provides a driver model for userspace drivers that
allows driver code to construct security contexts that explicitly map in
only the necessary objects that a device might need to access (e.g. com-
mand queues, data objects, etc.). As hardware devices grow in complexity
and increase their autonomy, treating them as additional computation
resources and limiting access to objects through mechanisms already in-
place for normal applications allows simpler programming of advanced
hardware devices.

7.4 posix compatibility

Twizzler provides a compatibility framework for POSIX applications. C
applications link to a patched version of musl [119], a C library written
for Linux. We have modified musl to emit function calls to a library we
wrote, called twix, instead of directly issuing system calls. The calls into
twix are then handled by emulating their Linux system call behavior. For
example, our implementation of write(2) allows us to create pseudo-
terminal objects that are shared between applications and a terminal
emulator that is hooked up to the serial port. Thus applications can call
printf to get their messages out to wider society. Rust applications do
not need as much of a compatibility layer, both because we can modify
Rust’s standard library more easily, and because Rust is not as tied to
POSIX as C is.
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7.4.1 Porting to Twizzler

Porting in Twizzler is straight-forward. We have a collection of tools
that provide a framework for compiling software using the Twizzler
toolchain against other ported software and libraries. Since we have
chosen musl as our standard C library, many applications work already
withminor changes. However, it is often the case that applications require
some small tweaks to get running—for example, configuration paths—
an experience common for anyone who has ported software to a new
operating system62. 62 You can’t see it, but I am raising

my glass to you, those who have
shared in this experience.

To date, we have ported a number of tools one would expect to find on
a Unix system, such as busybox (providing numerous command-line
utilities), bash, vim, gcc, binutils, and others.Many of these programs
required little or no modification. Of course, this means that they do
not gain some of the benefits Twizzler’s model provides, since they still
operate on persistent data with a POSIX model, however our goal in
porting these tools was not to improve their performance, it was to
provide a somewhat familiar environment for users.

Perfect emulation of a Linux kernel is a huge effort, and it is not
the primary goal of our research. As a result, not all system calls are
implemented and Linux features like procfs are lacking.Thismeans that
some programs may require features that are not yet implemented, and
therefore require modifications to twix to run. However, as we continue
to port software, twix’s coverage of Linux features grows, making future
porting easier. We will continue to implement more support in twix for
applications as needs arise. Note that many applications (even complex
applications like gcc) often boil down to reading and writing files and
managing processes, all of which is implemented.

7.4.2 Twix System Call Overhead

Our Unix emulation layer, twix, is meant to provide compatibility for
legacy applications. While we expect that applications will wish to take
full advantage of NVM and Twizzler’s improvements in programmability
and performance, we can still provide a small benefit for applications that
rely on twix to provide POSIX-like I/O. Access to twix is done by musl,
the C library we use, when it would normally perform a system call to
a Linux kernel. We replaced all instances of the syscall instruction in
C and assembly code in musl with a call instruction to an entry point
in twix. This entry point, despite being a function call, obeys the Linux
system call ABI (e.g. which registers hold parameters). Thus while it has
significantly less overhead than a full system call and context switch, it
does still have higher overhead than a normal function call since it must
back up and restore all registers.
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System Call OS Average Latency (ns)

getpid Linux 98.7 ± 2.3

Twizzler 10.2 ± 0.2

read Linux 321.4 ± 0.2

Twizzler 55.4 ± 0.2

table 7.1
Latency of selected twix system
calls compared to Linux system
calls.

Table 7.1 shows the latency of some selected system calls on both Linux
and Twizzler (implemented via twix). As expected, getpid’s overhead
is small on both systems, but on Twizzler it is significantly lower. The
difference, in this case, comes largely from the kernel entry overhead.
A small amount of additional overhead comes from twix matching the
Linux system call ABI and having to call its getpid implementation
through a lookup table.

We also measured the latency of a call to read for a file. We chose to
do reads on cached files for a small number of (already cached) bytes to
avoid device transfer overhead. Performing a file read on Twizzler often
amounts to a call to memcpy, so applications that perform large numbers
of small reads could see some benefit. In contrast, on Linux, the kernel
needs to traverse internal file structures, the page-cache, and possibly
file system structures. However, as we said, twix is intended for legacy
support, not performance, despite the lower system call overhead.

7.5 conclusion

We now have an understanding of what addressing and pointers look
like in Twizzler, and a basic idea of the operating system services Twiz-
zler provides. One can write programs, multi-thread them, synchronize
across threads via object sync words, access, create, copy, and delete
objects, and use Unix compatibility for things like printf. But this still
doesn’t address issues of memory safety, types, and failure-atomicity. Join
us in the next chapter where we will start diving into these scary topics.
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PROGRAMMING MODEL

POKE: Fear of failure is a poor
reason not to try.

—Outer Wilds

synopsis This chapter will discuss the programming model of Twizzler
at a higher level than operating system interfaces, including object layout,
safety, and lifetime.

While the direct interfaces presented by the operating system are im-
portant, most programmers will not directly interact with them. Instead,
they will use higher-level interfaces provided by a standard set of Twiz-
zler libraries. We will now take a look at some of the aspects of writing
programs that use objects on Twizzler. Note, though, that we are still
leaving a lot up to specific language runtimes and instead of being doc-
trinaire about all aspects of the system, we prefer to allow flexibility. An
example of this, which we will explore in more detail in this chapter, is
not preventing “persistent to volatile” references at a system level, and
instead relying on higher-level runtimes to enforce such things.

8.1 object layout

Recall that objects are, fundamentally, a “bag of bytes”, all identified via
an ID and an offset, with some areas pre-defined, for example, the FOT.
Objects in Twizzler often have a header at the object’s base, the contents
of which depend on what the object contains. Often these headers have
pointers to other data in the object, and describe the type of the object.
For example, in our evaluation we implement a red-black tree in an
object. The header contains some basic information about the tree as
well as a pointer to the root node. Placing headers at the object’s base
gives applications a “starting point” that they can use to start accessing
object data. Twizzler provides a dedicated function to get a pointer to an
object’s header, called obj_base.

Note that the base address of an object is not at offset 0, but instead one
page up, so that we can still trap NULL pointers. If this were not the case,
a pointer value of 0 would still be a valid pointer, and we want to remain
backwards compatible with the assumption that a NULL pointer has
integer value 0. The bottom page of an object is unmapped by Twizzler,
allowing NULL pointer dereferences to be trapped by the kernel.

While objects are flat, contiguous regions of memory, different ap-
plications may want to organize that memory in different ways. Some
objects, such as views are largely interpreted as an array, but sometimes
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applications need to explicitly allocate and deallocate memory within an
object. Twizzler provides an API to allocate and free units of memory
from application-specified regions within objects. We make use of this in
our red-black tree code, where new nodes are allocated out of the object
using this API.

Figure 8.1 shows a typical object in Twizzler. The NULL page is al-
ways present to trap NULL pointers, and is followed by a header. The
application setting up this object may have a region of some contiguous
data, such as some strings, or an array, and may point to it from the
header. The object may have a region setup for allocation so that a future
application using this object can easily allocate and free memory when
manipulating the object. Finally, the FOT and metadata regions start at
the top of the object and grow downwards.

ensuring base type properties When accessing persistent or
shared data for the first time, it’s necessary to specify the type of the
data. For objects, this means we need to specify the type of the header,
as objects are typed by their header, also called the object “base”. While
in C the function that gives access to the base returns a void *, the
function in Rust returns a reference to the specified base type. From
there, any other data accessed traverses data structures that use the type
system. Twizzler’s invariant pointers’ Rust implementation is typed, and
the mutability rules ensure that our transaction engine properly ensures
transactional properties, so any data to which we can get a reference is
well-typed as long as the header of the object is well-typed.

To ensure this, we encode, in the object’s metadata, a pair of 64 bit
numbers that refer to a unique ID of the header type63 and a version 63 This is currently allocated

manually, though we plan to
automatically generate the IDs via
procedural macros in the future.

number. When code tries to access the header, we do a one-time check
to see if the recorded ID and version match the ID and version from the
type that we are supposed to return. If they fail to match, we can return
an error, and if they do match, then we know it’s the correct type (up to
collisions in the ID space, that is).
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8.2 the flipside

One aspect of programming for NVM that is somewhat orthogonal
to Twizzler’s primary object model is considering what effects writes
will have to the actual physical media. This kind of consideration is
common—we think about block layouts and overwrites when consid-
ering differences between magnetic disk and SSDs—but for NVM, we
should ask what the new device characteristics are, since it is important
that systems are optimized to leverage their strengths and avoid stressing
their weaknesses. We typically try to reduce writes to physical media,
however with NVM it turns out that the number of bits flipped may be
the more important metric.

NVMs such as PCM suffer from both wear and energy use when it
must flip a stored bit. Applications such as IoT devices cannot tolerate
wear out and energy use as easily as other applications, and these de-
vices make good targets for the already dense and power efficient NVM
technologies. Flipping a bit in PCM cells consumes 15.7−22.5×more
power than reading a bit [36, 37, 75, 99], and causes wear (whereas read-
ing causes comparatively little wear). Thus, controllers can optimize by
examining bits to determine which must actually change on a write [130].
Of course, such an optimization is dependent on software, which issues
the writes. Reducing bit flips, an optimization goal that has yet to be
sufficiently explored, can both save energy and extend the life of NVM,
but we can optimize better by designing software to reduce bit flips.

We examined a number of common data structures and strategies
for how we can reduce bitflips caused by data structure updates. This
involved taking previously-known tricks like XOR linked lists [115] and
generalizing them to trees and hash tables, along with choices for bit
packing and data layout, and modifying Gem5, a system simulator, to
count bit flips. We found that we could easily reduce a significant number
of bits flipped in the data structures we studied with little performance
impact. Further details can be found in Appendix A.

8.3 crash consistency

Twizzler provides primitives for building crash-consistent data struc-
tures. At a low level, it provides mechanisms for writing back cache-lines,
appropriate fences, and basic transactions. Applications use these primi-
tives today outside of Twizzler to build up larger, more complex support
for crash-consistent data structures.

persistent memory Programming against persistent memory has
some advantages compared to programming against volatile memory
and needing to flush dirty pages to stable storage. Not only is it much
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faster, but failure-atomicity of an NVM data structure can be maintained
by the application alone (if it so desires). Our goal is to provide low level
primitives without restricting programs or prematurely prescribing par-
ticular solutions. There is a wealth of research on crash-consistent data
structures for NVM [24, 38, 39, 81, 89–91, 93, 123], but it is still in flux.
Of course, Twizzler manages system data structures, such as FOT en-
tries, views, etc., in a crash-consistent manner using the aforementioned
primitives, locking, and fencing.

At the time of writing, Intel systems handle NVMby enabling a certain
level of control over the cache system by applications, notably via the
clwb and fence instructions. Figure 8.2 shows the boundary between per-
sistent and volatile domains in an abstracted CPU that operates roughly
like how Intel’s do. In this model, any data stored in the cache is volatile,
and will be lost if power is lost. Any data that makes it to the memory
controller (for which the memory controller acknowledges the write)
is persisted. A small amount of internal residual power is used by the
persistent memory device to ensure the writes that reached the memory
controller are stable.

With this model in mind, we can ensure failure atomicity in a rather
inelegant manner if we use the clwb instruction to ensure cache lines are
flushed and the appropriate fence instructions to ensure durability, and
end up with a programming model reminiscent of multithreaded code
using fences. We can abstract this a little bit to allow the flushing of types
so as to avoid the programmer having to think entirely in cache lines.
However, this still is a lower level than most programmers likely want
for ensuring safety. While Twizzler does provide a set of interfaces for
persisting data at this level, it also supports a basic transactional interface.
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c transactions interface Twizzler provides a transactional-
persistent logging mechanism. Programmers write TXSTART/TXEND64 64 If you “love” C macros, give

these a look sometime.blocks to denote transactions and TXRECORD statements to record pre-
changed values, similar to the mechanism provided by PMDK [102].
If applications need more complex transactions using different logging
mechanisms, they can use libraries. Twizzler’s internal data structures and
libtwz’s manipulation of object metadata is handled via a combination
of these transactions and cache-line writebacks.

rust transaction interface TheRust interface to transactions
is much safer than the C version, as it actually enforces various rules
about type safety, aliasing, and mutability. An example transaction block
is written like,

obj.tx(|tx| {

let base = obj.base_mut(tx); // :&mut BaseType

base.do_something();

});

Here we start a transaction and get access to a transaction handle (tx).
When we want to get a mutable reference to part of the object, we must
pass in a transaction handle, and the only way to get a transaction handle
is via the tx function. Thus we can enforce the aliasing rules for Rust
inside the transaction framework.

thread restart Twizzler provides a mechanism for restarting
threads when power is restored following a crash. Since views are persis-
tent objects, all objects mapped during a thread’s execution are known
across power cycles, and aremapped back in.The thread is then started at
a special _resume entry point, allowing the program to handle the power
failure in an application-specific manner. Of course, volatile objects will
be lost when power resumes, and thus any attempted access to these
objects will result in an exception. Applications that wish to resume after
power failure will need to be aware of and handle this. We do not wish
to prescribe any restrictions here—applications that want to place their
heap in volatile memory for performance or security reasons should be
allowed to. We expect higher level support for applications to manage
persistent data, such as language support for persistent heaps, to make
use of the features we provide, so applications that want to resume can
put resuming information in persistent objects.

The reason we choose to restart threads at a known, different entry
point from normal application start up is that in current systems, there
is always volatile computation state (e.g. registers, the cache) that is lost
when power is lost. Of course, in the future, systems may be able to
prevent the loss of more and more ephemeral computation state (with
the logical extreme being perfect resumability). In this case, the _resume
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handler can be a simple stub that resumes the execution exactly as left off.
The more likely case, periodic checkpointing, can be similarly handled,
with the _resume handler selecting the most recent valid check point to
resume from. The _resume handler enables all of these solutions, thus
remaining applicable across hardware evolution.

8.4 memory safety and lifetimes

One final aspect of objects is safety, that is, ensuring proper typing of
memory and ensuring that object memory does not leave a dangling
reference behind. Twizzler accomplishes this via a combination of some
runtime checks, some kernel support for specifying lifetime relationships
between objects, and some language support.

8.4.1 Object Types, Persistence, and Lifetime

Applications need to be able to specify what type of memory an object
resides in. Currently, we are operating on systems that contain both per-
sistent NVM and volatile DRAM as main memory, and applications may
want to make use of both of these memory types. Placing certain objects
in DRAM, for example, can result in performance improvements (e.g.
caching read-only objects) or security improvements (e.g. making tem-
porary key material volatile). Twizzler exposes this choice to applications
at object creation time, allowing them to specify the type of the object.
At least two types, volatile and persistent, are supported by default. As
additional types of physical memory are added to systems (e.g. different
kinds of NVM with different properties, high-bandwidth memory, etc),
applications may wish to have more fine-grained control over where
objects are placed, and Twizzler’s APIs allow such control. Objects can
also be moved between types of memory after creation, though this may
be a time consuming operation as it involves copying potentially large
amounts of data65. 65 I would love to see NVM

to/from DRAM direct physical
copy hardware!

By default, objects are persistent and live in kernel-managed NVM or
pager-managed storage unless they are marked as volatile. If an object is
volatile, it has a limited lifetime that is related to the power state of the
machine—as soon as power is lost or the system is rebooted all volatile
objects disappear. Note that Twizzler removes the distinction between
volatile and persistent objects for how applications access data, relying
on higher-level language or library support and application support for
dealing with the limited lifetime of volatile objects.

The property of persistent versus volatile for objects differs from the
concept of ephemeral data. The “volatile” property places a physical
restriction on the lifetime of an object (the machine’s power state), while
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the “persistent” property indicates that the object will exist until explicitly
deleted. Objects can also be long-lived or ephemeral independent of
their persistence property, since we use the term “ephemeral” to describe
information, data, or state that has a finite lifetime and is expected to
“go away”. While all volatile objects are ephemeral, the reverse is not
true—we may place ephemeral data in a persistent object to allow for
recovery after an unexpected power cycle. The “persistent” property of
an object is a recorded piece of information that the kernel associates
with an object, but there is no such information for ephemeral versus
long-lived. Instead, we provide a mechanism for specifying a logical
lifetime of objects relative to one another with a mechanism called ties,
which we will discuss below.

8.4.2 Object Ties and Logical Lifetime

Applications in Twizzler also have a lifetime; an application’s job is typi-
cally to operate on some persistent data while performing some computa-
tion before eventually exiting. Such an application will likely use volatile
objects to represent temporary computation state (e.g. the stack and heap,
which are ephemeral). However, just assigning an object as volatile is
insufficient because there is a lifetime mismatch: the volatile object will
live until the next reboot while the application may exit before then or
may even live and try to recover after a power cycle. Manually deleting
the volatile object when the application is done is also insufficient, as
it does not account for crashes where the application may be unable to
clean up its state. Furthermore, applications that wish to support recovery
may make use of persistent stacks and heaps, thus these objects would
have to be persistent despite being ephemeral.

While we could provide a mechanism designed specifically for this
“system-level” task, where the kernel maintains a set of objects to au-
tomatically cleanup when an application exits, this would require the
kernel to have some understanding of what an “application” is. Further-
more, if we generalize a solution to automatic cleanup, we can allow
applications to make use of it for their own purposes. For example, in
Unix, it is common for programs to create and immediately unlink files
to ensure the system frees those resources when the program exits. We
would like to reproduce similar semantics here that also solves the lower
level problem above of freeing application state by assigning a lifetime to
objects that is more expressive than simply “volatile” and “persistent”.

In Twizzler, object lifetime is expressed through ties. An object can be
tied to another by invoking a system call that tells the kernel that object
A is tied to object B, after which the lifetime of A is guaranteed to be at
least that of B. The kernel will not fully delete object A, even if the delete
system call is invoked on it, until after B is fully deleted. An object may be
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tied to a large (but finite) number of other objects and may also be untied
at any time. This model of specifying object lifetime relative to others is
similar to Rust [120], where reference lifetime can be named so that the
programmer can express lifetimes of objects relative to each other. Note
that object ties are not related to invariant pointers (discussed in more
detail in Chapter 6), and instead primarily provide a way to formalize
automatic cleanup.

Object ties provide a convenient mechanism for applications to build
data structures across multiple objects without giving up easy cleanup if
something goes wrong or if the “root” object is deleted. Twizzler also uses
ties internally: when an object is created as copy-from an existing object,
it uses copy-on-write semantics, and thus internally marks the source
object as tied to the new object. We also tie ephemeral program state
objects to threads (which are also represented by objects) such that they
are automatically cleaned up when a program exits. It is our expectation
that programmers will only rarely directly use ties. Instead, we expect
that ties will provide necessary features that higher-level programming
language support for persistent memory can use.

Note that object ties interact with the notion of volatile and persistent
objects, because volatile objects have an implicitmaximum lifetime—that
of the next machine restart or power loss. Tying volatile objects to volatile
objects and persistent objects to persistent objects both act as expected.
Tying a persistent object to a volatile object is also semantically simple
(persistent objects already have an “assumed lifetime” that is longer than
a volatile object). Tying a volatile object to a persistent object, however,
may seem somewhat nonsensical. However, Twizzler does still allow this
because it has useful semantics: if an application creates a data structure
with some volatile component66, it may want to tie the lifetime of that 66 Since Twizzler’s kernel is not

involved in reference creation, it
cannot prevent such a reference
from being created. We expect
language support for persistent
data structures to impose
restrictions on applications in
this regard, and the OS should
not prematurely restrict how
applications use volatile and
persistent objects. Access to a
volatile object that no longer
exists after a reboot results in a
simple access fault, mitigating
security concerns.

volatile component to the persistent component if the data structure is
to be deleted. This use case (creating a persistent object that we expect to
delete) is not uncommon, particularly in applications designed to recover
partial computation after a crash. Note that, in this case, the maximum
lifetime of the volatile object is still in-play; after a power cycle, that
object will no longer be present, so tying a volatile object to a persistent
object is somewhat dangerous.

8.4.3 Safe Allocation

As we discussed above, an object may optionally have a region within
which we rely on an object memory allocator to organize memory. How-
ever, when objects may be persisted or shared, there are some additional
hazards to consider.

1. Crash Consistent: The allocator must allow for power or applica-
tion failures, and so all operations must be failure-atomic.
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2. Leaked Memory: Say we allocate some memory from an object.
Let’s consider the interface described by malloc and free. We can
imagine a situation where an application allocates some memory,
but before we manage to store the pointer anywhere, the power
is reset. Or, alternatively, after a node is removed from, say, a list,
but before the call to free is made, the power dies. In both cases
the memory is leaked, and cannot be recovered without some
application-specific fsck-like check.

3. Dangling Pointers: Imagine that same scenario with freeing a
node, but this time, the order of operations (remove node, then
free) is not specified67. Or, similarly, we allocate somememory and 67 This could happen to improper

use of transactions or persist
barriers.

write a new node, and link it, but the order of operations is wrong
again. Both of these cases result in writing a pointer to memory
considered freed by the allocator.

One might wonder if there concerns are specific to NVM, where hard-
ware persists behind a curtain, or more generally, perhaps when we are
flushing periodically to disk. Certainly we must worry about the above
issues if hardware is controlling persistence, but we still care even without
NVM. The semantics of accessing an object are of sharing it or not (recall
from Chapter 4 that persistence is sharing), and thus once it’s shared it
could be in multiple places in space and/or time. We must, therefore,
make allocation and resource acquisition, and deallocation and reference
removal failure-atomic. Consider a case where we interrupt an allocator
operation after part of the allocator state is persisted to disk and the
power fails. The problems above still exist, even for persistent objects
stored on a disk or SSD.

To properly have an allocator that works on shared objects, we must
build it to be internally crash consistent and present an external interface
that allows applications to ensure external crash consistency. To do this,
we will need to68 change the interfaces to something richer than malloc 68 Thankfully!

and free:

int alloc(object *obj, size_t len,

void **owner, uin64_t flags,

void (*ctor)(void *mem, void *data), void *data);

int free(object *obj, void *p,

void **owner, uint64_t flags);

The allocate function is built around an allocation and construction
pattern that follows three steps:

1. Allocate memory from the allocator.

2. Construct the memory into a valid inhabitant of the intended type.

3. Record the reference to the new data into some data structure.
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The freeing pattern occurs in two steps:

1. Remove the final (or only) pointer to the to-free memory by over-
writing it (or clearing it to NULL).

2. Free the memory back to the allocator.

These steps are vital for persistence-safety, and it is vital that they occur
in that order and atomically. Permuting the steps can allow for any of the
problems we discussed above, and these steps are all needed to properly
allocate an instance of a type and record a reference to it.

Internally, the allocator keeps an undo log for the operations per-
formed by the allocator functions. When allocating, a region is selected
and removed from internal data structures. The operations to remove
the memory region from internal data structures are recorded to the log.
The constructor function (the ctor argument) is called on the memory
region. After the constructor function completes, the region is flushed
to memory for persistence safety. Next, data pointed to by the owner
argument pointer is recorded into the log, thus ensuring we cannot have
dangling pointers. Finally, the value at *owner is written with the new
invariant pointer to the allocated region, and the log is flushed.

The above allocation algorithm is safe because it ensures that, if the log
is replayed, all internal data structures will be reset to contain the region,
and the owner pointer is also reset to prevent the (now unallocated)
region from being referenced. Since the region was not allocated, we
can assume that none of that memory is referenced externally, and the
contents do not matter69. Thus we can assume that region was filled with 69 For example, we can use that

region for allocator-internal data
structures!

uninitialized memory, and needs not be restored70. This is not a mere

70 Any internal allocator data that
needs to be restored inside the
region will be properly reset by
replaying the log.

optimization for restoring after a crash, nor is it an optimization for bulk
flushes during allocations, it is vital for efficient implementation. The
total amount of memory that needs to be flushed is O(s), where s is the
size being allocated, because we have to flush the entire memory region
that holds the type for which we are allocating and the size choice is
controlled by the caller. However, the number of items we record to the
log is controlled by the allocator implementation, and can be madeO(1).

For any internal operation, we count the number of items it has to
add to the log, e.g., if we remove a region from the free list, split it, and
add one part to the free list, how many log records are created by those
list operations. Since those are fixed operations, we can count the total
number statically. If, however, an allocator custodial function runs an
unspecified number of times, we cannot be sure ahead of time how many
operations it will perform (e.g., merging nodes in a list depends on the
number of mergeable pairs, which depends on the length of the list). For
these operations, we define a maximum allowed number of log entries,
and break out of loops early if we run out. Thus we only need to count
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the number of operations per iteration, and then tweak the maximum log
entries to allowmost such loops to run for several, but a bounded number
of, loops. As a result, we can set a maximum log length and allocate it
statically within the region, instead of having to handle a variable and
unbounded number of entries due to either internal or external causes.

8.5 conclusion

Ensuring that programmers have access to a reasonable programming
model that sits atop the operating system abstractions built for it is of
utmost importance. Even if the lower levels of the system provides access
to a fast, invariant reference implementation in a global address space
that simplifies data models and transformations, programmers still need
systems that make some of the harder parts easier. Twizzler provides a
set of higher level APIs that facilitate day-to-day tasks like allocations
and ensuring crash consistency.





Part III

EP I LOGUE

SEPTIMUS: When we have found all the mysteries and lost
all the meaning, we will be all alone, on an empty shore.
THOMASINA: Then we will dance. Is this a waltz?

—Arcadia, Tom Stoppard





9
CONCLUS ION

RIEBECK: I learned a lot, by the
end of everything. The past is past,
now, but that’s...you know, that’s
okay! It’s never really gone
completely. The future is always
built on the past, even if we won’t
get to see it.

—Outer Wilds

Let’s talk about this operating system we just designed and built.

9.1 to look ahead

“Where did you go to, if I may
ask?” said Thorin to Gandalf as
they rode along. “To look ahead,”
said he.

—The Hobbit, J.R.R Tolkien

We stand before a crossroads. Before us is a convergence of trends, a great
upset within the memory hierarchy, faster and smarter networks and
interconnects, the disaggregation of compute, and the ever increasing
demands for concurrency and performance from software. The friction
to reexamine our models and evolve our operating systems is low—
provided we can produce a compelling reason for developers to invest in
new ways of programming. Do we take the easy route, like so many times
before, and try to shoehorn new technologies into existing interfaces, or
do we take a step towards a model that expresses a data-centric view and
better fits with hardware trends and the goals of software?

For us, the answer is clear71. 71 It’s the second thing.

So, what happens next? There are two aspects of the future I want to
discuss with respect to Twizzler—the future of the model we discussed
and its resilience, and future research directions for Twizzler.

9.1.1 Future Models

Looking back, it really does appear, in hindsight, as if operating sys-
tem interfaces plunged fully and purposefully into the endless maw of
complexity. However, the decisions over the years were not made with
the foresight required to predict what criticisms we today would aim at
those choices. The model I have presented here is similarly a product of
its time, made with some attempt at foresight but, ultimately, must be
superceded when it, too, becomes too unwieldy to effectively use among
new hardware and software characteristics. That said, I have made some
attempts to design a general model that may be useful beyond specific
hardware and instead is modeled after patterns:

1. Instead of focusing specifically onNVMDIMMs,we have designed
our object model around the idea of a heterogeneous memory
system in general. Should future kinds of memory be adopted,
and mix-and-matched, or should NUMA become more common,

83
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our model built for understanding data movement within physical
memory as a first-class operation will be able to adapt.

2. Instead of trying to be doctrinaire at a low-level and limit our
invariant references to the semantics of a single language, we pro-
vide a “lowest common denominator” in our implementation of
references, and allow additional metadata to be stored in the FOT
should richer semantics need additional storage. As a result, we
can not only support languages of today, but also future languages
and runtimes that may wish for a richer model.

3. The Twizzler kernel is small, largely because most functionality is
pushed into userspace. Thus, not only can we more easily modu-
larize, update, and replace components, but those components are
closer to applications and can be communicated with more easily.

4. The design of our global address space is not limited to exist within
a single machine, it is large enough that huge numbers of comput-
ers can interact with it wih low coordination. Should the size need
to increase, we can do so with an application-agnostic procedure.
Finally, the address space is usable both by multiple independent
nodes, but also components within the nodes, enabling hardware
devices to operate independently.

9.1.2 Future Research

I hope that we continue with
exploration.

—Margaret H. Hamilton

A common saying asserts that a dissertation describes completed work,
and thus any discussion of future work should reflect the nature that the
work is completed. Yet I would be remiss if I didn’t adequately convey
that the nature of an operating system does not include completeness,
and for a research operating system, that means there are always future
research directions we can explore. Here are a few.

compiler support Twizzler’s clean-slate NVM abstraction re-
opens the possibility of co-evolving OSes, compilers and languages, and
hardware. Standardized OS support for cross-object pointers provides
a stationary target for both compilers and hardware to design towards,
whereas application-specific solutions do not. Twizzler’s pointer transla-
tion functions are simple enough to be emitted by a compiler. We plan
to explore adding basic compiler support for C and C++ to automati-
cally interoperate with Twizzler so that persistent pointers are even more
transparent to the compiler. Better still, we would like to study additional
language-level support for persistent pointers, including type and life-
time annotations, such as the ones supported in Rust [120], for additional
semantics the compiler canmake use of when emitting code that operates
directly on persistent data structures.
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hardware support Hardware support, too, can be helpful in im-
proving the performance of our pointer translations. With Twizzler pro-
viding a common framework, we can clearly state our needs to hardware.
For example, hardware accelerated FOT access would improve the perfor-
mance of pointer-heavy data structures. Segmentation support, allowing
us to assign page-tables for each object and load them in as needed,
would dramatically speedup memory mapping (and move memory man-
agement closer to the semantics of our programming model). Finally,
first-class support for abstracting physical memory—a necessary feature
for efficiently moving data around in a heterogeneous memory hierarchy
in the face of numerous devices—would simplify the design of the kernel
because we would not need to invoke the entirety of the virtualization
hardware. We are interested in exploring modifications to RISC-V to
better support Twizzler.

higher level programming frameworks Theprogramming
model we discussed in Chapter 8 provides a number of basic operations
on objects, but one could imagine a higher level model. Implementing
Rust APIs for more complex transactional semantics on shared objects
would allow programmers to easily express atomic operations. A higher
level framework that has awareness of application semantics via the
FOT can perform optimizations on behalf of the application that would
traditionally be difficult to implement, e.g. semantics-aware prefetching
and caching in cooperation with the network, enabled by inspecting
the FOT. A framework that also has knowledge of operations that an
application may perform on an object could then perform different
distribution and coherence strategies for CRDT [109] objects than for
immutable or arbitrarily-mutable objects.

alternative storage technologies Twizzler meshes well
with key-value SSDs, which extend the NVMe specification to include
put and get operations. This would allow us to store and retrieve parts
of objects based on their names rather than block addresses, thus greatly
simplifying the storage system of the OS because it removes the need
for a filesystem. Twizzler uses a userspace pager design for moving data
between memory and indirectly-accessible storage; providing a more
“native” interface for object-based storage will greatly improve the per-
formance of this system.
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9.2 looking behind
“And what brought you back in the
nick of time?” “Looking behind,”
said he.

—The Hobbit, J.R.R Tolkien

Let’s return to the principal hypothesis I put forward in Chapter 1.

The data-centric model for designing operating system ab-
stractions is not only viable, but demanded both by software
and hardware trends.

In Chapters 2 and 3 we discussed the trends in hardware and software
that led to the above statement, putting together the arguments that,
(1) hardware is pushing us towards having in-memory data structures
escape their traditional confinement, (2) software overheads induced
by the context problem and operating system involvement are too high
for modern hardware, (3) a data-centric model addresses the problems
we have discussed via a method of progamming and storing data that
requires no serialization and enables direct access and sharing. We also
discussed why retrofitting is insufficient, covering Claim 1 fromChapter 1. “The most important reason for

going from one place to another is
to see what’s in between.”

—The Phantom Tollbooth, Norton
Juster

In Chapter 4 we discussed some details of the data-centric viewpoint,
followed by elucidating Twizzler’s place in the design space. Chapters 5
and 6 covered the global address space and invariant references, going
into detail with case studies, performance analysis, and modeling to
establish the viability of the model in terms of usability, and performance
and space overhead, thus covering the remaining Chapter 1 Claims.

Chapters 7 and 8 wrap up by discussing operating system services and
implementation, and programming model details. Discussing details like
failure-atomicity in allocation, persistence, durability, and crash-recovery
is vital, as it establishes where the complexity in the system still remains,
despite many things getting easier.

9.3 final remarks
SOLANUM: It’s tempting to linger
in this moment, while every
possibility still exists. But unless
they are collapsed by an observer,
they will never be more than
possibilities.

—Outer Wilds

Operating systems must evolve to support future trends in memory
hierarchy organization. Failing to evolve will relegate new technology
to outdated access models, preventing it from reaching its full potential,
and making it difficult for OSes to evolve in the future. Twizzler shows a
way forward: an OS designed around new hardware trends and software
demands that provides new, efficient, and easy to use semantics for direct
access to memory in a global address space. Twizzler will give us a system
from which we can build a full NVM-based OS around a data-centric
design and explore the future of applications, OSes, and processor design
on a new memory hierarchy. ...How beautiful. It’s different than

I’d envisioned. Whatever happens
next, I do not think it is to be
feared.

—The Prisoner, Outer Wilds

Overall, we have shown that invariant pointers in Twizzler allow pro-
grammers to easily build composable and extensible applications with
low overhead by removing the kernel from persistent data access paths,
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thereby improving the flexibility and performance. Our simpler program-
ming model improved performance despite the small pointer translation
overhead. Twizzler is easy toworkwith compared to existing systems, and
we were able to both quickly prototype real applications with advanced
access control features and port existing software, such as SQLite.

But those aren’t the real lessons. Instead, consider how much of the
operating system was under review after asking a simple question, “what
if the lifetime of in-memory data extends beyond the ephemera?” This
question was at the heart of this research, and led to all the work herein.
It’s not tied to a specific idea about persistent memory72 or networking; 72 Though I won’t deny that NVM

kicked it off.instead, it’s about programming, applications, and data. Reconsidering
core ideas in programming and operating systems can lead to dramatic
shifts in our understanding and designs. If we do not take the plunge
by calling into question core beliefs and make moves towards building
new things, we will be forever mired in the cage of our outdated systems.
But there is hope—not from Twizzler alone, but from all the operating
systems research that has exploded onto the scene.

“It’s a magical world, Hobbes, ol’
buddy... Let’s go exploring!”

—Calvin, Calvin and Hobbes,
Bill Watterson

It’s an exciting time, and I cannot wait for the next new operating system
that asks, what if things could be better.





Part IV

APPENDIX

CHERT: We only get so much time, don’t we? Ah, there was
still more I wanted to do...How unlucky to have been born at
the end of the universe.

—Outer Wilds
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A RATHER FL IPPANT APPENDIX

synopsis This appendix discusses some early work I did on bitflip
optimization for non-volatile memories.

a.1 introduction

As byte-addressable non-volatile memories (NVMs) become more com-
mon [47, 60, 75], it is increasingly important that systems are optimized
to leverage their strengths and avoid stressing their weaknesses. Histori-
cally, such optimizations have included reducing the number of writes
performed, either by designing data structures that require fewer writes
or by using hardware techniques such as caching to reduce writes. How-
ever, it is the number of bits flipped that matter most for NVMs such as
phase-change memory (PCM), not the number of words written.

NVMs such as PCM suffer from two problems due to flipping bits: en-
ergy usage and cell wear-out. As these memory technologies are adopted
into longer-term storage solutions and battery powered mobile and IoT
devices, their costs become dominated by physical replacement from
wear-out and energy use respectively, so increasing lifetime and drop-
ping power consumption are vital optimizations for NVM. Flipping a
bit in a PCM consumes 15.7−22.5×more power than reading a bit or
“writing” a bit that does not actually change [36, 37, 75, 99]. Thus, many
controllers optimize by only flipping bits when the value being written
to a cell differs from the old value [130]. While this approach saves some
energy, it cannot eliminate flips required by software to update modified
data. An equally important concern is that PCM has limited endurance:
cells can only be written a limited number of times before they “wear out”.
Unlike flash, however, PCM cells are written individually, so it is possible
(and even likely) that some cells will be written more than others dur-
ing a given period because of imbalances in values written by software.
Reducing bit flips, an optimization goal that has yet to be sufficiently
explored, can thus both save energy and extend the life of NVM.

Previously, we showed that small changes in data structures can have
large impacts in the bit flips required to complete a set of data structure
modifications [13]. While it is possible to reduce bits flipped with changes
to hardware, we can gain more by optimizing compiler constructs and
choosing data structures to take advantage of semantic information that
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is not available at other layers of the stack; it is critical we design data
structures with this in mind. Successful NVM-optimized systems need
to target new optimizations for NVM, including bit flip reduction.

We implemented three such data structures and evaluated the impact
on the number of writes and bit flips, demonstrating the effectiveness
of designing data structures to minimize bit flips. These simple changes
reduce bit flips by as much as 3.56×, and therefore will reduce power
consumption and extend lifetime by a proportional amount, with no
need to modify the hardware in any way. Our contributions are:

1. Implementation of bit flip counting in a full cycle-accurate simu-
lation environment to study bit flip behavior.

2. Empirical evidence that reducing memory writes may not reduce
bit flips proportionally.

3. Measurements of the number of bit flips required by operations
such as memory allocation and stack frame use, and suggestions
for reducing the bit flips they require.

4. Modification of three data structures (linked lists, hash tables, red-
black trees) to reduce bit flips and evaluation of the effectiveness
of the techniques.

This appendix is organized as follows. Section A.2 gives background
demonstrating how bit flips impact power consumption and NVM life-
time. Section A.3 discusses some techniques for reducing bit flips in
software, which are evaluated for bit flips (Section A.4) and performance
(Section A.5). Section A.6 discusses the results, followed by comments
on future work (Section A.7) and a conclusion (Section A.8).

a.2 non-volatile memory and bit flips

Non-volatile memory technologies [15] such as phase-change mem-
ory (PCM) [75], resistive RAM (RRAM, or memristors) [111, 118], Fer-
roelectric RAM (FeRAM) [47], and spin-torque transfer RAM (STT-
RAM) [69], among others, have the potential to fundamentally change
the design of devices, operating systems, and applications. Although these
technologies are starting to make their way into consumer devices [60]
and embedded systems [111], their full potential will be seen when they
replace or coexist withDRAMas byte-addressable NVM. Such amemory
hierarchy will allow the processor, and thus applications, to use load and
store instructions to update persistent state, bypassing the high-latency
I/O operations of the OS. However, power consumption, especially for
write operations, and device lifetime are more serious concerns for these
technologies than for existing memory technologies.
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a.2.1 Optimizing for Memory Technologies

Data structures should be designed to exploit the advantages andmitigate
the disadvantages of the technologies on which they are deployed. For
example, data structures for disks are block-oriented and favor sequential
access, while those designed for flash reduce writes, especially random
writes, often by trading them for an increase in random reads [25]. Prior
data structures and programming models for NVM [24, 39, 50, 85, 123,
128] have typically exploited its byte-addressability while mitigating the
relatively slow access times of most NVM technologies. However, in the
case of technologies such as PCM or RRAM, existing research ignores
two critical characteristics: asymmetric read/write power and the ability
to avoid rewriting individual bits that are unchanged by a write [15, 130].

For example, writes to PCM are done by melting a cell’s worth of ma-
terial with a relatively high current and cooling it at two different rates,
leaving the material in either an amorphous or crystalline phase [100].
These two phases have different electrical resistance, each corresponding
to a bit value of zero or one. The writing process takes much more energy
than reading the phase of the cell, which is done by sensing the cell’s re-
sistance with a relatively low current. To save energy, the PCM controller
can avoid writing to a cell during a write if it already contains the desired
value [130], meaning that the major component of the power required by
a write is proportional not to the number of bits (or words) written, but
rather to the number of bits actually flipped by the write. Based on this
observation, we should design data structures for NVM to minimize the
number of bits flipped as the structures are modified and accessed rather
than simply reducing the number of writes, as is more commonly done.

a.2.2 Power Consumption of PCM and DRAM

While our research applies to anyNVM technologywith expensivewrites,
we focus on PCM because its power consumption figures are more read-
ily available. Figure A.1 shows the estimated power consumption of 1 GB
of DRAM and PCM as a function of bits flipped per second, using power
measurements from prior studies of memory systems [13, 21, 36, 37, 75,
99]. The number of writes to DRAM has little effect on overall power
consumption since the entire DRAM must be periodically refreshed
(read and rewritten); refresh dominates, resulting in a high power re-
quirement regardless of the number of writes. In contrast, PCM requires
no “maintenance” power, but needs a great deal more energy to write an
individual bit (~50 pJ/b [8]) compared to the low overhead for writing
a DRAM page (~1 pJ/b [75]). The result is that power use for DRAM is
largely proportional to memory size, while power consumption for PCM
is largely proportional to cell change rate. The exact position of the cross-



94 a rather flippant appendix

0.0 0.5 1.0 1.5 2.0

Bit Flips per Second ×109

0.00

0.05

0.10
Po

w
er

(W
at
ts
)

DRAM
PCM

figure a.1
Power use as a function of flips
per second [13].

over point in Figure A.1 will be narrowed down as these devices become
more common; many features of these devices, including asymmetric
write-zero and write-one costs, increased density of PCM over DRAM,
and decreasing feature sizes, will affect the trade-off point over time.

Figure A.1 demonstrates the need for data structures for PCM to min-
imize cell writes. Because the memory controller can minimize the cost
of “writing” a memory cell with the same value it already contains, the
primary concern for data structures in PCM is reducing the number of
bit flips, which the memory controller cannot easily eliminate.

Power consumption is particularly concerning for battery-operated
Internet of Things (IoT) devices, which may become a significant con-
sumer of NVM technologies to facilitate fast power-up and reduce idle
power consumption [63, 64]. Devices that collect large amounts of data
and write frequently to NVM may find power usage increasing depend-
ing on access patterns. Thus, IoT devices may benefit significantly from
bit-flip-aware systems and data structures.

a.2.3 Wear-out

Another significant advantage to avoiding bit flips is reducing memory
cell wear-out. NVM technologies typically have a maximum number of
lifetime writes, and fewer writes means a longer lifetime. However, by
avoiding unnecessary overwrites, the controller would introduce uneven
wear withinNVMwords where some of the bits flipmore frequently than
others due to biases of certain writes. For example, pointer overwrites
may only alter the low-order bits, except for the few that are zero because
of structure alignment in memory, if the pointers are to nearby regions.
Thus, the middle bits in a 64-bit word may wear out faster than the lowest
and highest bits. While reducing bit-flips increases the average lifetime
of the cells in a word, it has the potential to exacerbate the uneven wear
problem since such techniques might increase the biases of certain writes.

Fortunately, we can take advantage of existing research inwear-leveling
for NVM that allows the controller to spread out the cell updates within
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a given word. While a full remapping layer similar to a flash translation
layer is infeasible for NVM—the overhead would be too high—hardware
techniques such as row shifting [131], content-aware bit shuffling [52], and
start-gap wear leveling [98] may be able to mitigate biased write patterns
with lowoverhead.Thiswould allowNVMto leverage bit flip reduction to
reduce wear even if the result is that some bits are flippedmore frequently
than others. These techniques, implemented at the memory controller
level, can work in tandem with the techniques described in this appendix
since they benefit bit flip reduction and can distribute “hot” bits across a
word, mitigating the biased write patterns bit flip reduction techniques
may introduce.

a.2.4 Reducing Impact of Bit Flips in Non-volatile Memory

Although bit flips in NVM have been studied previously, much of that
work has focused on hardware encoding, which re-encodes cache lines
to reduce bit flips, but re-encoding has limited efficacy [22, 62, 104] be-
cause it must also store information on which encoding was used. While
hardware techniques are worth exploring, software techniques to reduce
bit flips can be more effective because they can leverage semantic knowl-
edge available in the software but not visible in the memory controller’s
limited view of single cache lines.

Chen et al. [21] evaluate data structures on NVM and argue that re-
ducing bit flips is workload dependent and difficult to reason about,
so we should strive to reduce writes because writes are approximately
proportional to bit flips. We found that this is often not the case—our
prior experiments revealed that bit flips were often not proportional to
writes, and we were able to examine bit flips and optimize for them in an
example data structure [13]. These findings are further corroborated by
our experiments in Section A.4.

Since bit flips directly affect power consumption and wear, we can
study three separate aspects for bit flip reduction:

1. Data structure design: Since data organization plays a large role in
the writes thatmake it tomemory, we designed new data structures
built around the idea of pointer distance [115] instead of storing
pointers directly. While data writes themselves significantly affect
bit flips, these writes are often unavoidable (since the data must
be written), while data structure writes are more easily optimized
(as we see in existing NVM data structure research). Furthermore,
data structures often require a significant number of updates over
time, while data is often written once (since we can reduce writes
by updating pointers instead of moving data). Thus the overall
proportion of bit flips caused by data writes may drop over time
as data structures are updated.
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2. Effects of program operation: A common source of writes is the
stack, where return addresses, saved registers, and register spills
are written. Understanding how these writes affect bit flips plays a
critical role in recommendations for bit flip reduction for system
designers.

3. Effects of caching layers: Since writes must first go through the
cache, it is vital to understand how different caching layers and
cache sizes affect bit flips in memory. Complicating matters is the
unique consistency challenges of NVM [24, 39, 123], wherein pro-
grams often flush cache-lines to main memory more frequently
than they otherwise would, use write-through caching, or more
complex, hardware-supported cache flushing protocols. These
questions are evaluated in Section A.4.6.

a.3 reducing bit flips in software

By reducing bit flips in software, we can effect improvements in NVM
lifetime and power use without the need for hardware changes. To build
data structures to reduce bit flips (Sections A.3.1–A.3.3), we propose sev-
eral optimizations to pointer storage along with additional optimizations
for indicating occupancy. For stack writes, we propose changes to com-
pilers to spill registers such that they avoid writing different registers to
the same place in the stack (Section A.3.4).

a.3.1 XOR Linked Lists

XOR linked lists [115] are a memory-efficient doubly-linked list design
where, instead of storing a previous and next node pointer, each node
stores only a siblings value that is the XOR between the previous
and next node. If the previous node is at address p and the next node
is at address n, the node stores siblings = p ⊕ n. This scheme cuts
the number of stored pointers per node in half while still allowing bi-
directional traversal of the list—having pointers to two adjacent nodes
is sufficient to traverse both directions. However, an XOR linked list
has disadvantages; it does not allow O(1) removal of a node with just a
single pointer to that node, as a node’s siblings cannot be determined
from the node alone, and it increases code complexity by requiring XOR
operations before pointers are dereferenced.

When they were proposed, XOR linked lists had little advantage over
doubly linked lists beyond a modest memory saving. However, with the
need for fewer bit flips on NVM, they gain a critical advantage: they cut
the number of stored pointers in half, reducing writes, but they also store
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the XOR of two pointers, which are likely to contain similar higher-order
bits, making the siblings pointer mostly zeros.

One problem with the original design for XOR linked lists is that each
node stores siblings = p ⊕ n, but for the first and last node, p or n
are NULL, so the full pointer value for its adjacent node is stored in the
head and tail. To further cut down on bit flips, we changed this design
so that the head and tail XOR their adjacent nodes with themselves
(if the node at address h is the head, then it stores siblings = h ⊕ n

instead of siblings = 0⊕n). The optimization here is not a performance
optimization—in fact, it’s likely to reduce performance—and only makes
sense in the context of bit flips, an optimization goal that would not
be targeted before the introduction of NVM. However, with bit flips
in-mind, it becomes critical. Other data structures may have similar
optimizations that we can easily make to reduce bit flips 73. 73 Circular linked lists solve the

head and tail siblings pointer
problem automatically, since no
pointers are stored as NULL;
however, in XOR linked lists this
increases the number of pointer
updates during an insert
operation and requires storing
two adjacent head nodes to
traverse.

a.3.2 XOR Hash Tables

A direct application of XOR linked lists is chained hashing, a common
technique for dealing with hash table collisions [28]. An array of linked
list heads is maintained as the hash table, and when an item is inserted, it
is appended to the list at the bucket that the item hashes to. To optimize
for bit flips, we can store an XOR list instead of a normal list, but since
bidirectional traversal is not needed in a hash table bucket, we need not
complicate the implementation with a full XOR linked list. Instead, we
apply the property of XOR lists that we find useful—XORing pointers.

Each pointer in each list node is XORed with the address of the node
that contains that pointer. For example, a list node n whose next node is
p will store n⊕ p instead of p. In effect, this stores the distance between
nodes rather than the absolute address of the next node and exploits
locality in allocators. The end of the list is marked with a NULL pointer.
In addition to a distance pointer, each node contains a key and a pointer
to a value. The list head stored in the hash table is a full node, allowing
access to the first entry in the list without needing to follow a pointer.

A second optimization we make is that an empty list can be marked
in one of two ways: the least-significant bit (LSB) of the next pointer set
to one, or the data pointer set to NULL. When we initialize the table, it is
set to zero everywhere, so the data pointers are NULL. During delete, if
the list becomes empty, the LSB of the next pointer in the list head is set
to 1, a value it would never have when part of a list. This allows the data
pointer to remain set to a value such that when it is later overwritten,
fewer bits need to change. This is an example of an optimization that only
makes sense in the context of bit flips, as it increases code complexity for
no other gain.
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a.3.3 XOR Red-Black Trees

Binary search trees are commonly used for data indexing, support range
queries, and allow efficient lookup and modification, as long as they
are balanced. Red-black trees [28, 103] are a common balanced binary
tree data structure with strictly-bounded rebalancing operations during
modification. A typical red-black tree (RBT) node contains pointers to its
left child and right child, along with meta-data. They often also contain
a pointer to the parent node, since this enables easier balancing imple-
mentation and more efficient range-query support without significantly
affecting performance due to the increased memory usage [71].

We can generalize XOR linked lists to XOR trees. Instead of storing
left, right, and parent pointers, each node stores xleft and xright,
which are the XOR between each child and the parent addresses. This
reduces the memory usage to the two-pointer case while maintaining
the benefits of having a parent pointer, since given a node and one of its
children (or its parent), we can traverse the entire tree. Like XOR linked
lists, the root node stores xleft = root ⊕ left, where root is the
address of the root node and left is the address of its left child, saving
bit flips. To indicate that a node has no left or right child, it stores NULL.

Determining the child of a node requires both the node and its parent:
get_left_child(Node *node, Node *parent) {

return (parent ⊕ node->xleft);

}

Getting a node’s parent, however, requires additional work. Given a child
c and a node n, getting n’s parent requires we know which child (left
or right) c is. Fortunately, in a binary search tree we store the key k of
a node in each node, and the nodes are well-ordered by their k. Thus,
getting the parent works as follows:
get_parent(Node *n, Node *c) {

if(c->k < n->k) return (n->xleft ⊕ c);

else return (n->xright ⊕ c);

}

Note that this is not the only way to disambiguate between pointers.
In fact, it’s not strictly necessary to do so because the algorithms can
be implemented recursively without ever needing to traverse up the
tree explicitly. However, providing upwards traversal can reduce the
complexity of implementation and improve the performance of iteration
over ranges. Another solution to getting the parent node would be to
record whether a node is a left or right child by storing an extra bit along
with the color. We did not evaluate this method, as it would increase
both writes and bit flips over our method.

With these helper functions, we implemented both an XOR red black
tree (xrbt) and a normal red-black tree (rbt) using similar algorithms.
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The code for xrbt was just 20 lines longer, with only a minor increase in
code complexity. Node size was smaller in xrbt, with a node being 40
bytes instead of 48 bytes as in rbt. To control for the effects of node size
on performance and bit flips, we built a variant of xrbt with the same
code but with a node size of 48 bytes (xrbt-big).

generalization These techniques can generalize beyond a red-
black tree. Any ordered k-ary tree can use XOR pointers in the same way.
As discussed above, disambiguating between pointers during traversal
depends on either additional bits being stored or using an ordering
property. Either technique can work with arbitrary graph nodes.

a.3.4 Stack Frames

Data structure layout and data writes are only some of the writes made
by a program. Register spills, callee-saved register saving, and return
addresses pushed during function calls are all writes to memory, and if
these writes make it to NVM, they will cause bit flips as well. These writes
may make it to main memory if the cache is saturated or if the program is
designed to keep program state in NVM to enable instantaneous restart
after power cycles [89]. Additionally, systems designed for NVMmay run
with write-through caches to reduce consistency complexity, resulting in
execution state reaching NVM.

The exact pattern of stack writes depends on the ABI and the calling
convention of a system and processor, though we focus on x86-64 Linux
systems. When a program calls a function, it (potentially) pushes a num-
ber of arguments to the stack, followed by a return address. In the called
function, callee-saved registers are pushed to the stack, but only if they
are modified during that function’s execution. When finished, the callee
pops all the saved registers and returns.

Our observation is that the order that callee-saved registers are pushed
to the stack is not specified, meaning that two different functions could
push the same registers in a different order. Secondly, the same callee-
saved register is less-likely to change drastically in a small amount of code
in a tight loop, since these registers are typically used for loop counters or
bases for addressing. Thus, a loop that calls two functions alternately will
likely have similar or the same values in the callee-saved registers during
the invocation of both functions. If these two functions push the (often
unchanged) callee-saved registers to the same place both times, fewer
bit flips will occur than if the functions pushed them in different orders.
While a simple example, such loops that call out to alternating functions
with different characteristics can occur, for example, when rehashing a
table, rebuilding a tree, or reading task items from a linked list.
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We propose specifying a callee-saved register frame layout that func-
tions adhere to, so that the registers are always pushed in the same order.
To handle variable numbers of arguments, we make use of passing argu-
ments in registers, common in many modern ABIs. If a function need
not push any callee-saved registers, it can still reserve the stack space for
that frame and then not push anything to save writes. Functions which
only save a small number of registers can still push them to the correct
locations within the frame. Finally, if this is standardized, programs need
not worry about library calls increasing bit flips.

For example, if we have two functions A and B in anABIwhere registers
e, f , g, h are callee-saved, and A uses e while B uses g, then traditionally
each function would simply push the frame pointer followed by the reg-
ister they wish to save:

A:

push fp

mov fp ← sp

push e

...

pop e

pop fp; ret

B:

push fp

mov fp ← sp

push g

...

pop g

pop fp; ret

If e and g are significantly different, then a significant amount of need-
less bit flips could occur if these functions are called often. Instead, if
we define a layout that functions adhere to for register saving, the code
would look like:

A:

push fp

mov fp ← sp

push e

sub sp, 24

...

add sp, 24

pop e

pop fp; ret

B:

push fp

mov fp ← sp

sub sp, 16

push g

sub sp, 8

...

add sp, 8

pop g

add sp, 16

pop fp; ret

Here the code always pushes the same register to the same place,
regardless of the registers it needs to save, thereby allowing overwrites
by likely similar values. While it does add some additional instructions,
code could instead write registers directly to the stack locations using
offset style addressing, reducing code size.
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a.4 memory characteristics results

We evaluated XOR linked lists, XOR hash tables, and XOR red-black
trees, tracking bits flipped in memory, bytes written to memory, and
bytes read from memory during program execution. Our goal was not
only to demonstrate that our bit flip optimizations were effective, but to
also understand how different system and program components affected
bit flips. In addition to tracking bit flips caused by our data structures, we
also studied bit flips caused by varying levels and sizes of caching, calls
to malloc, and writes to the stack. Finally, we evaluated the accuracy of
in-code instrumentation for bit flips, which would allow programmers to
more easily optimize for bit flips at lower cost than full-system simulation.
All of these experiments were designed to demonstrate how effective
certain bit flipping reduction techniques are. Existing systems are poorly
equipped to handle evaluation of these techniques, since existing systems
are poorly optimized for NVM. The techniques we present here are
designed to be used by system designers when building new, NVM-
optimized systems.

a.4.1 Experimental Methods

Evaluating bit flips during data structure operations requires more than
simply counting the bits flipped in each write in the code. Compiler
optimizations, store-ordering, and the cache hierarchy can all conspire
to change the order and frequency of writes to main memory, poten-
tially causing a manual count of bit flips in the code to deviate from the
bits flipped by writes that actually make it to memory. To record better
metrics than in-code instrumentation, we ran our test programs on a
modified version of Gem5 [11], a full-system simulator that accurately
tracks writes through the cache hierarchy and memory. We modified
the simulator’s memory system so that, for each cache-line written, it
could compute the Hamming distance between the existing data and the
incoming write, thereby counting the bit flips caused by each write to
memory. The bit flips for each write were added to a global count, which
was reported after the program terminated, along with the number of
bytes written to and read from memory. This gave us a more accurate
picture of the bit flips caused by our programs, since writes that stay
within the simulated cache hierarchy do not contribute to the global
count. We ran the simulator in system-call emulation mode, which runs a
cycle-accurate simulation, emulating system calls to provide a Linux-like
environment, while tracking statistics about the program, including the
memory events we recorded.

We used the default cache hierarchy (shown in Table A.1) provided by
Gem5, using the command-line options “--caches --l2cache”. For
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Cache Count Size Associativity

L1d 1 64KB 2-way

L1i 1 32KB 2-way

L2 1 2MB 8-way

table a.1
Cache parameters used in Gem5.
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A typical result of running a test
program with increasing values
of iteration_count.

the XOR linked list and stack writes experiments, we used clwb instruc-
tions to simulate consistency points (in the linked list, clwb was issued
to persist the contents of a node before persisting the pointers to the
node, and for stack writes, clwb was issued after each write). This was
not done for the malloc experiment (we used an unmodified system
malloc for testing), the XOR hash table (the randomness of access to the
table quickly saturated the caches anyway), or manual instrumentation
(caches were irrelevant). For the XOR red-black tree, in addition to the
bit flip characteristics, we focused on observing how cache behavior af-
fected more complex data structures; these results, along with the results
of varying L2 size, are discussed in Section A.4.6.

Most of the test programs take an iteration_count as their first
argument, which specifies how many iterations the program should run.
For example, the red-black tree would do iteration_count number
of insertions. We ran the simulator on a range of iteration_counts,
recording the bits flipped, bytes written, and bytes read (collectively
referred to as memory events) for each value of iteration_count. An
example of a typical result is shown in Figure A.2. The result was often
linear, allowing us to calculate a linear regression using gnuplot, giving us
both a slope and confidence intervals. The slope of the line is “bit flips per
operation”—for example, a slope of 10 for linked list insert means that
it flipped 10 bits on average during insert operations. Throughout our
results, only the slope is presented unless the raw data is non-linear. Since
the slope encodes the bit flips per operation, we can directly compare
variants of a data structure by comparing their slopes. Error bars are 95�
confidence intervals.
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a.4.2 Calls to malloc

Many data structures allocate data during their operation. For example,
a binary tree may allocate space for a node during insert or a hash table
might decide to resize its table. An allocator allocating data from NVM
must store the allocation metadata within NVM as well, so the internal
allocator structures affect bit flips for data structures which allocate
memory. Additionally, the pointers returned themselves contribute to the
bits flipped as they are written.

We called malloc 100,000 times with allocation sizes of 16, 24, 40,
and 48 bytes. We chose these sizes because our data structure nodes were
all one of these sizes.The number of bits flipped per malloc call is shown
in Figure A.3. As expected, larger allocation sizes flip more bits, since the
allocator meta-data and the allocated regions span additional cache lines.
Interestingly, 40 byte allocations and 48 byte allocations switch places
partway through, with 40 byte allocations initially causing fewer bit flips
and later causing more after a cross-over point. We believe this is due
to 40 byte allocations using fewer cache lines, but 48 byte allocations
having better alignment.

After a warm-up period where the cache hierarchy has a greater effect,
the trends become linear, allowing us to calculate the bit flips per malloc
call. Allocating 40 bytes costs 1.5×more bit flips on average than allo-
cating 48 bytes. Allocating 24 or 16 bytes has the same flips per malloc
as 48 bytes but has a longer warm-up period, such that programs would
need to call malloc (24) 1.56× as often to flip the same number of bits
as malloc (48).

While the relative savings for bit flips between malloc sizes are sig-
nificant, their absolute values must be taken into consideration. Calls
to malloc for 16 and 48 bytes cost 2 ± 0.1 flips per malloc (after the
warm-up period) while calls to malloc for 40 bytes cost 3± 0.1 flips per
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malloc. As we will see shortly, the data structures we are evaluating flip
tens of bits per operation, indicating that savings from malloc sizes are
less significant than the specific optimizations they employ.

a.4.3 XOR Linked Lists

We evaluated the bit flip characteristics of an XOR linked list compared
to a doubly-linked list, where we randomly inserted (at the head) and
popped nodes from the tail at a ratio of 5:1 inserts to pops. The results are
shown in Figure A.4. As expected, bit flips are significantly reduced when
using XOR linked lists, by a factor of 3.56×. However, both the number
of bytes written to and read from memory were the same between both
lists. The reason is that, although an XOR list node is smaller, malloc
actually allocates the same amount of memory for both.

We counted the number of pointer read and write operations in the
code, and discovered that, although the XOR linked list performs fewer
write operations during updates, it performs more read operations than
the doubly-linked list.This is because updating the data structure requires
more information than in a doubly-linked list. However, FigureA.4 shows
that the number of reads from memory are the same, indicating that the
additional reads are always in-cache.

a.4.4 XOR Hash Tables

We implemented two variants of hash tables: “single-linked”, which im-
plemented chaining using a standard linked list, and “XOR Node”, which
XORs each pointer in the chain with the address of the node containing
the pointer. We ran a Zipfian workload on them [14], where 80� of up-
dates happen to 20� of keys74, where keys and values were themselves 74 Skew of 1, with a population of

100,000.Zipfian. During each iteration, if a key was present, it was deleted, while
if it was not present, it was inserted. This resulted in a workload where
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a large number of keys were rarely modified, but a smaller percentage
were repeatedly inserted or removed from the hash table.

Figure A.5 shows the bits flipped and bytes written by the hash table
after 100,000 updates. As expected, the XOR lists saw a reduction in
bit flips over the standard, singly-linked list implementation while the
number of bytes written were unchanged. We were initially surprised by
the relatively low reduction in bit flips (1.13×) considering the relative
success of XOR linked lists; however, the common case for hash tables
is short chains. We observed that longer chains improve the bit flips
savings, but forcing long hash chains is an unrealistic evaluation. Since
buckets typically have one element in them, and that element is stored
in the table itself, there are few pointers to XOR, meaning the reduction
is primarily from indicating a list is valid via the least-significant bit
of the next pointer. The bit flips in all variants come primarily from
writing the key and value, which comprise 9.3 bit flips per iteration on
average. Thus, this data structure had little room for optimization, and
the improvements we made were relatively minor—although they still
translate directly to power saving and less wear, and are easy to achieve
while not affecting code complexity significantly.

a.4.5 XOR Red-Black Trees

Figure A.6 shows the memory event characteristics of xrbt (our XOR
RBT with two pointers, xleft and xright), xrbt-big (our XOR RBT
with each node inflated to the size of our normal RBT nodes), and rbt

(our standard RBT) under sequential and random inserts of one million
unique items. Each item comprises an integer key from 0 to one million
and a random value. Both xrbt and xrbt-big cut bit flips by 1.92×
(nearly in half) in the case of sequential inserts and by 1.47× in the case
of random inserts, a dramatic improvement for a simple implementation
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Memory characteristics of XOR
red-black trees compared to
normal red-black trees.

change. The small saving in bit flips in xrbt-big over xrbt is likely due
to the allocation size difference as discussed in Section A.4.2.

The number of bytes written is also shown in Figure A.6. Due to the
cache absorbing writes, xrbt-big and rbt write the same number of
bytes to memory in all cases, even though rbt writes more pointers
during its operation. We can also see a case where the number of writes
was not correlated with the number of bits flipped, since xrbt writes
fewer bytes but flips more bits than xrbt-big.

We did not implement and test delete operation in our red-black trees
because the algorithm is similar to insert in that its balancing algorithm
is tail-recursive andmerely recolors or rotates the tree a bounded number
of times. Since the necessary functions to implement this algorithm are
present in all variations, it is certainly possible to implement, and we
expect the results to be similar between them.

a.4.6 Cache Effects

Although it is easy to exceed the size of the L1 cache during normal
operation of large data structures at scale, larger caches may have more
of an effect on the frequency of writes to memory. Of course, a persistent
data structure which issues cache-line writebacks or uses write-through
caching bypasses this by causing all writes to go to memory75, but it is 75 Even if this is the case, a full

system simulator will give a more
accurate picture than manually
counting writes, since store
ordering and compiler
optimizations still affect memory
behavior.

still worth studying the effects of larger write-back caches on bit flips.
They may absorb specific writes that have higher than average flips, or
they may cause coalescing even for persistent data structures worrying
about consistency.

We studied cache effects in two ways—how the mere presence of a
layer-2 cache affects the data structures we studied and how varying the
size of that cache affects them. Figure A.7 shows xrbt compared with
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rbt, with and without L2. The effect of L2 is limited as the operations
scale, with the bit flips for both data structures reaching a steady, linear
increase once L2 is saturated. The bit flips per operation for both data
structures with L2 is the same as without L2 once the saturation point is
reached, indicating that while the presence of the cache delays bit flips
from reaching memory, it does little to reduce them in the long term.
Finally, since xrbt has fewer bit flips overall and fewer memory writes,
it took longer to saturate L2, delaying the effect.

Next, we looked at different L2 sizes, running xrbt with no L2, 1MB
L2, 2MB L2 (the default), and 4MB L2, as shown in Figure A.8. The exact
same pattern emerges for each size, delayed by an amount proportional
to the cache size. This is to be expected, and it further corroborates our
claim that cache size has only short-term effects.
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a.4.7 Manual Instrumentation

While testing data structures on Gem5 was straightforward, if time con-
suming, more complex structures and programs may be difficult to eval-
uate, either due to Gem5’s relatively limited system call support or due to
the extreme slowdown caused by the simulation. Since real hardware does
not provide bit flip counting methods, we are left with using in-program
instrumentation if we want to avoid the Gem5 overhead. However, these
results may be less accurate.

To study accuracy of in-code instrumentation, we manually counted
bit flips in the XOR and doubly-linked lists. We did this by replacing all
direct data structure writes (e.g., node->prev = pnode) with a macro
that both did that write and also counted the number of bytes (by looking
at the types), and computing the Hamming distance between the original
and new values. Totals of each were kept track of and reported at the end
of execution. While not difficult to implement, manual instrumentation
adds the possibility of error and increases implementation complexity.

Figure A.9 shows the results of manual instrumentation compared
to results from Gem5. While accuracy suffered, manual counting was
not off by orders of magnitude. It properly represented the relationship
between XOR linked lists and doubly-linked lists in terms of bit flips,
and it was off by a constant factor across the test. We hypothesize that the
discrepancy arose from the fact that our additional flip counting code
affected the write combining and (possibly) the cache utilization. We
expect that future system designs could “calibrate” manual instrumenta-
tion by running a smaller version of their system on Gem5 to calculate
the discrepancy between its counts and theirs, allowing them to more
accurately extrapolate the bits flipped in their system using instrumenta-
tion. Additionally, one could modify toolchains and debugging tools to
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automatically emit such instrumentation code during code generation.
Manual instrumentation may find its use here for large systems that
are too complex or unwieldy to run on Gem5, or as a way to quickly
prototype bit flipping optimizations.

a.4.8 Stack Frames

To study bit flips caused by stack writes, we wrote an assembly program
that alternates between two function calls in a tight loop while increment-
ing several callee-saved registers on x86-64. The loop could call two of
three functions—function x, which pushed six registers (the callee-save
registers on x86_64, including the base pointer) in a given order, y, which
pushed the registers in a different, given order, and s, which pushed only
two of the registers, but pushed them to the same locations as function x.
Our program had three variations: x-x, which called function x twice, x-s,
which alternated between functions x and s, and x-y, which alternated
between functions x and y. The x-y variant represents the worst-case
scenario for register spilling, while x-s demonstrates our suggestion for
reducing bit flips. To force the writes to memory, we used clwb after the
writes to simulate write-through caching or resumable programs.

Figure A.10 shows bit flips and Figure A.11 shows bytes written by all
three variants. The x-s and x-x variants have similar behavior in terms
of bit flips, which is understandable because they are pushing registers
to the same locations within the frame. The x-y variant, however, had
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Operation XOR Linked Doubly-Linked

Insert (ns) 45± 1 45± 1

Pop (ns) 27± 1 28± 1

Traverse (ns/node) 2.6± 0.1 2.2± 0.1

table a.2
Performance of XOR linked lists
compared with doubly-linked
lists.
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Performance of XOR hash table
variants.

3.8× the number of bit flips compared to x-x and 4.1× the number of
bit flips compared to x-s, showing that consistency of frame layout has
dramatic impact. Unsurprisingly, x-x and x-y had the same number of
bytes written, since they write the same number of registers, while x-s
wrote fewer registers. By keeping frame layout consistent, we can reduce
bit flips, and the optimization of only pushing the registers needed but
to the same locations can further reduce writes as well.

a.5 performance analysis

While bit flip optimization is important, it is less attractive if it produces
a large performance cost. We compared our data structures’ performance
to equivalent “normal” versions not designed to reduce bit flips. Bench-
marks were run on an i7-6700K Intel processor at 4GHz, running Linux
4.18, glibc 2.28. They were compiled using gcc 8.2.1 and linked with
GNU ld 2.31.1. Unless otherwise stated, programs were linked dynami-
cally and compiled with O3 optimizations.

xor linked lists The original publication of XOR linked lists
found little performance difference between them and normal linked
lists [115]; we see the same relationship in our implementation (see Ta-
ble A.2). The only statistically significant difference was seen in traversal,
where XOR linked lists have a 1.18× increase in latency; however, both
lists average less than three nanosecond-per-node during traversal.

xor hash tables Figure A.12 shows the performance of the two
hash table variants we developed. We inserted 100,000 keys, followed
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by lookup and delete. As expected, both variants have similar latencies,
with a slowdown of only 1.06× for using XOR lists during lookup.

xor red-black trees We measured xrbt, xrbt-big, and rbt

during 100,000 inserts and lookups, the results of which are shown in
Figure A.13 and Figure A.14. During insert, xrbt is slightly faster than
rbt, with xrbt-big being slower, indicating that although there is a non-
zero cost for the XOR operations, it is outweighed by the performance
improvement from smaller node size and better cache utilization. The
lookup performance shown in Figure A.14 demonstrates a similar pattern,
although for sequential lookup the overheads are similar enough that
there is no significant performance difference between xrbt and rbt.

a.6 discussion

software bit flip reduction The data structures presented
here are both old and new ideas.While not algorithmically different from
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existing implementations (both xrbt and rbt use the same, standard
red-black tree algorithms), they present a new approach to implemen-
tation with optimizations for bit flipping. This has not been sufficiently
studied before in the context of software optimization; after all, there is
no theoretical advance nor is there an overwhelming practical advantage
to these data structures outside of the bit flip reduction, an optimization
goal that is new with NVM. However, keeping this in mind has huge
ramifications for data structures in persistent memory and applications
for new storage technologies, as it presents a whole new field of study
in optimization and practical data structure design. The goal is not per-
formance improvements; instead we strive to prolong the lifetime of
expensive memory devices while reducing power use, with at most a
minor performance cost. These improvements can be achieved with-
out hardware changes, meaning even savings of 10� (1.1×) or less are
worthwhile to implement because savings are cumulative.

These optimizations are not specific to PCM; any memory with a sig-
nificant read/write disparity and bit-level updates could benefit from
this. The energy savings from bit flip optimization will, of course, be
technology-dependent, numbers for which will solidify as the technolo-
gies are adopted. Our estimates of the linear relationship between flips
and power use (Figure A.1) indicate that, on PCM, the energy savings
will be roughly proportional to the bit flip savings since the difference
between read and write energy is so high.

Bit flips can and should be reasoned about directly. Not only is it
possible to do so, but the methods presented here are straightforward
once this goal is in mind. Furthermore, while reducing writes can reduce
bit flips, we have confirmed that this is not always true. XOR linked lists
reduced bit flips without affecting writes, while xrbt reduced writes over
xrbt-big at the cost of increasing bit flips.With stack frames, the biggest
reduction in bit flips corresponded with no change in writes, while the
reduction of writes was correlated with only a modest bit flip reduction.

The implications are far-reaching, especially when considering novel
computation models that include storing program state in NVM. Writes
to the stack also affect bit flips, but these can be dramatically optimized.
Compilers can implement standardized stack frame layouts for register
spills that savemany bit flipswhile remaining backwards compatible since
nothing in these optimizations breaks existing ABIs. Further research
is required to better study the effects of stack frame layout in larger
programs, and engineering work is needed to build these features into
existing toolchains.

Of course, we must be cautious to optimize where it matters. While
different allocation sizes reduced bit flips relative to each other, the overall
effect was minor compared to the savings gained in other data structures.
In fact, the reduction in allocation size from 48 to 40 bytes in xrbt
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actually increased bit flips in calls to malloc, but this increase is dwarfed
by the savings from the XOR pointers. Additionally, the hash table saw a
relatively small saving compared to other data structures since it already
flipped a minimal number of bits in the average case; red-black trees
often do more work during each update operation, resulting in a number
of pointer updates. Hash tables often do their “rebalancing” during a
single rehash operation; perhaps bit flip optimization for hash tables
should focus on these operations, something we plan to investigate in
the future.

cache effects The data structures we tested all had the same
behavior—a warm-up period where the cache system absorbed many of
the writes followed by a period of proportional increasing of bit flips as
the number of update operations increased. We must keep this in-mind
when evaluating data structures for bit flips, since wemust ensure that the
ranges of inputs we test reach the expected scale for our data structures,
or we may be blind to its true behavior. The cache size affects this, of
course, but it does so in a predictable way in the case of xrbt, with only
the warm-up period being extended by an amount proportional to cache
size. Of course, the behavior may be heavily dependent on write patterns.
Thus, we recommend further experiments and that system designers take
caches into account when evaluating bit flip behavior of their systems.

The cache additionally affects the read amplification seen in XOR
linked lists, wherein the XOR linked list implementation issues more
reads than a doubly-linked list implementation. However, the reads that
make it to memory are the same between the two, indicating that those
extra reads are always in-cache. The resultant write reduction and bit flip
reduction is well worth the cost since a read from cache is significantly
cheaper than a write to memory.

a.7 future work

Although we covered a range of different data structures, there are many
more used in storage systems that should be examined, such as B-trees [7]
and LSM-trees [92], both to understand their bit flipping behavior as
compared to other data structures and to examine for potential opti-
mizations. In addition to data structures, different algorithms such as
sorting can be evaluated for bit flips. Though this may come down to
data movement minimization, there may be optimizations in locality
that could affect bit flips.

While data structure and algorithm evaluation can provide system
designers with insights for how to reduce bit flips, examining bit flips
in a large system, including one that properly implements consistency
and our suggested stack frame modifications (perhaps through compiler
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modification), would be worthwhile. There are a number of NVM-based
key-value stores [126]; comparing them for bit flips could demonstrate
the benefits of some designs over others.

Studying bit flips directly is a good metric for understanding power
consumption and wear, but a better understanding through the evalu-
ation of real NVM would be illuminating. The power study discussed
earlier was derived from a number of research papers that give approxi-
mate numbers or estimates. On a real system, we could measure power
consumption, and cooperation with vendors may enable accurate studies
of wear caused by bit flips. Additionally, some technologies (e.g., PCM)
have a disparity between writing a 1 or a 0, something that could be lever-
aged by software (in cooperation with hardware) to further optimize
power use.

a.8 conclusion

The pressures from new storage hardware trends compel us to explore
new optimization goals as NVM becomes more common as a persistent
store; the read/write asymmetry of NVM must be addressed by reducing
bit flips. As we showed, the number of raw writes is not always a faithful
proxy for the number of bit flips, so simple techniques that minimize
writes overall may be ineffective. At the OS level, we can reconsider mem-
ory allocator design tominimize bit flips as pointers are written. Different
data structures use and write pointers in different ways, leading to dif-
ferent tradeoffs for data structures when considering NVM applications.
At the compiler level, we show that careful layout of stack frames can
have a significant impact on bit flips during program operation. Since it
can be challenging to reason directly about how application-level writes
translate to raw writes due to the compiler and caches, more sophisti-
cated profiling tools are needed to help navigate the tradeoffs between
performance, consistency, power use, and wear-out.

Most importantly, we demonstrated the value of reasoning at the appli-
cation level about bit flips, reducing bit flips by 1.13− 3.56× with minor
code changes, no significant increase in complexity, and little perfor-
mance loss. The data structures we studied had novel implementations,
but were algorithmically the same as their standard implementations; yet
we still saw dramatic improvements with little effort. This indicates that
reasoning about bit flips in software can yield significant improvements
over in-hardware solutions and opens the door for additional research
at a variety of levels of the stack for bit flip reduction. These techniques
translate directly to power saving and lifetime improvements, both im-
portant optimizations for early adoption of new storage trends that will
have lasting impact on systems, applications, and hardware.
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