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Abstract
Byte-addressable non-volatile memory (NVM) placed along-

side DRAM promises a fundamental shift in software abstrac-

tions, yet many approaches to using NVM promise merely

incremental improvement by relying on old interfaces and

archaic abstractions. We assert that redesigning the core pro-

gramming model presented by the operating system is vital

to best exploiting this technology. We are developing Twiz-

zler, an OS that presents an effective programming model

for NVM sufficient to construct persistent data structures

that can be easily and globally shared without serialization

costs. We consider and evolve a key-value store that runs on

Twizzler, and demonstrate how our programming model im-

proves programmability with early experiments indicating

performance need not be lost and may be improved.

1 Introduction
The last decade has seen a surge in research related to byte-

addressable non-volatile memory (NVM), yet much of this

research focuses narrowly on consistency models or fitting

existing interfaces to NVM. Many key issues, including se-

curely and easily sharing persistent data containing persis-

tent references, remain unaddressed. These issues arise from

the broader implications of adopting NVM into the mem-

ory hierarchy [2]: NVM will fundamentally change the way

hardware interacts, the way operating systems are designed,

and the way applications operate on data.

The programming model that operating systems provide

to software is necessarily influenced by the hardware on

which it runs. Current models, such as POSIX, provide an

effective programming model for systems with relatively

high-latency persistent storage: even an SSD with 50 µs la-

tency suffers only a 2% overhead from a 1 µs system call.

However, the advent of NVM as sub-microsecond persistent
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storage compels us to step back and consider how an operat-

ing system and programming environment would look if we

built it from the ground up around NVM.

Low-latency persistent storage enables the adoption of a

single-level store model such as that used in the IBM i [17],

in which all system memory is managed as a single address

space, typically by dividing it into variable-sized objects or

segments. In such a system, threads must be able to create

and store persistent pointers in such a way that other threads

can access them directly. But this model introduces other

issues, such as ensuring that security is enforced on each
pointer access, allowing this approach to work across sys-

tems (with the attendant impact on a global name space),

and exploring the implications of a single-level name space.

While there is some work towards addressing the chal-

lenges of managing persistent pointers in a large, persis-

tent, and global address space, these approaches often fall

short. PMDK [27], a popular NVM programming framework,

cannot achieve these goals because it does not provide a

scalable data sharing solution nor does it integrate security

with its design, instead outsourcing these key concerns to

file and block-based interfaces (such as POSIX). An effec-

tive NVM programming model will instead internalize the

lessons learned from single-address space OS and single-level

store research, and will reconsider the entire system stack

since the solution to these challenges will have ramifications

to howwe build secure applications and share persistent data.

Current operating systems’ abstractions no longer align well

with the model the hardware provides.

Our earlier work [5] discusses the abstractions necessary

for software and hardware to effectively use NVM. To address

these challenges and needs, we are in the process of building

Twizzler, a clean-slate OS design for NVM that nonetheless

can provide backwards compatibility existing programs. This

paper extends our previous work by considering the effects

of security and data sharing in a global address space for our

proposed software abstractions and design choices; in partic-

ular, we provide a programming model with a scalable data

sharing solution, support for late-binding in both naming

and access control, and a security model that checks each

data access with little kernel involvement. In this paper, we

discuss four aspects of the Twizzler programming model:

1. A programming model that stores context necessary

to access data (i.e. object IDs, names, access rights, etc)

with the data itself and not as ephemeral state.

2. Data references which are not only persistent but glob-
ally valid without the need for complex coordination.
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3. A security model that simplifies and combines access

control and data access, avoids TOCTTOU [33] errors,

and enables “late-binding” on access rights by check-

ing rights at access time, thus reducing the complexity

of implementing access control for NVM programs.

4. A naming system that eliminates the distinction be-

tween memory and storage, gives programs flexibility

in how names are resolved, and provides late-binding

between user-friendly names and unique IDs—an often

missing feature in NVM programming frameworks.

2 Background and Motivation
Our target NVM technologies are both byte-addressable and

directly accessiblewith a latency similar to that of DRAM [18].

Our prior work discusses the implications of these character-

istics on the abstractions for accessing persistent data that

should be offered to hardware and software [5]. The insights

into how this affects programming models were:

1. Abstractions must enable low-latency access. The high

latency of a system call compared to NVM device la-

tency means that the kernel cannot be involved in the

majority of persistent data access [7, 34], and every
kernel interposition must be accounted for.

2. Serialization when persisting data is unnecessary for

NVM—storing persistent data as in-memory data struc-

tures leads to a simpler programming model where

applications are primarily an expression of data struc-

tures. Additionally, serialization is expensive. In a two-

tier memory hierarchy that requires data movement

this cost can be tolerated, but that cost cannot be toler-
ated with NVM since it becomes a significant overhead

when accessing data.

3. Persistent pointers, which implement references via

identity and not ephemeral location, are vital for soft-
ware to construct data structures in a world of persis-

tent memory. The implementation details of persistent

pointers are critical, as increasing their size has nega-

tive effects on performance and memory use. In Twiz-

zler, persistent pointers are 64 bits. Virtual addresses

are insufficient as they are ephemeral and cannot en-

code identity-based data references for objects in a

distributed, global address space without dramatically

increasing pointer size or incurring coordination costs.

We explicitly avoid providing a specific NVM crash con-

sistency model or mechanism. While crash consistency is

important in the context of NVM, and well-studied [9, 10,

12, 20, 22–25, 35], our work does not have any inherent

requirements for a particular approach to consistency for

applications. Moreover, we do not wish to restrict ourselves

to a particular approach while the research is still in flux;

instead, we choose to leave the choice up to the programmer.

Incremental Approaches are Insufficient Our design is

a significant departure from current storage abstractions;

however, we firmly believe that such a sweeping change is

necessary to take full advantage of NVM. POSIX’s file access

model is commonly bypassed by new frameworks [1] and it

requires increasing effort to fit new technologies and tech-

niques into it. NVM’s characteristics demand that interfaces

such as read and write be bypassed. While interfaces like

mmap improve the situation somewhat when combined with

direct-access to NVM (DAX) [37], mmap still cannot hand

out persistent, identity-based references, and it relies on file

descriptors thus complicating the programming model by

requiring the use of POSIX along-side a persistent memory

API. These interfaces also fall short compared to our security

model, requiring a separation of access control mechanisms

from data access mechanisms, leading to more work for pro-

grams as discussed in Section 3.3.

A clean-slate approach not only reduces the complexity

of the system by dropping the need to support outdated

interfaces, but it also enables redesigning interfaces and the

OS for direct access to byte-addressable memory instead

of spending effort extending APIs indefinitely. Removing

unnecessary layers of software and designing the API for

modern hardware with an eye towards the future has the

potential to enable vast improvements in programmability,

data sharing, and security—but this will only be possible

if our design decisions permeate all levels of the software

stack. While these are our primary goals, we also expect an

improvement in performance to arise from the removal of

serialization and simplification of software layers.

Related Work Our design for object-based and segment-

style memory derives from fundamental and ongoing OS

research [3, 4, 6, 8, 14, 16, 19], though we differ by consider-

ing how persistent memory affects a global address space.

The emphasis on userspace-centered runtimes is based on Ex-

okernel and libOS [4, 6, 14] work. Though we avoid a single,

virtual address space solution (it is insufficient for persistent

pointers [5]), we take lessons such as linkage and sharing

complexity from single-address space OSes [8, 16, 26, 30].

Single-level stores [28, 29] form a backbone of our design,

which treats all “storage” as a single level of persistent mem-

ory, using common techniques such as page faults to move

data to and from block or object-oriented devices such as

SSDs. Some of these approaches, in particular issues around

orthogonal persistence [11], are relevant to NVM, while

page-faulting is less so. NVM research that focuses on pro-

gramming models [9, 35] provides abstractions for persistent

structures, but often focuses on memory safety and con-

sistency [10, 24], which, while vital, does not address the

issues presented here. While some frameworks and OSes en-

able more flexible references [27] without the single-address

space approach, these too have limitations (see Section 4).

NVM filesystems [13, 36] provide vital insights for organiz-

ing data on NVM; however they are often tied to POSIX

which we try to avoid, thereby often needing interfaces such
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Figure 1. A persistent pointer and the FOT. The pointer

indexes into the FOT to retrieve the object ID of the target.

as mmap (with DAX) that do not fit our model of in-memory

data structures without virtual addresses, and conflate nam-

ing data with storing and organizing data (which we also

wish to split up in our model).

Case Study: A Key-Value Store To better understand how

software is written in our model, consider an example appli-

cation: a key-value store (KVS). The following section will

discuss our programming model in more detail, the benefits

of our design choices, and the concrete implications these

have on the features and design of the KVS. A KVS that takes

best advantage of NVM will both be low-latency and avoid

unnecessary copying. Since the keys and values are stored

in persistent memory that is directly addressable, a lookup

operation should be able to return a direct pointer to the

persistent value that the application can copy if it wishes.

Our KVS, twzkvs, was built in roughly 250 lines of C code,

is low-latency (see Section 5), and can hand out direct point-

ers. It supports a put operation (kvs_put(K k, V v)), a get
operation (kvs_get(K k) -> &V), and a delete operation
(kvs_del(K k)). We also built a similar KVS that ran on a

standard Unix system (unixkvs).

3 NVM Programming Model
Twizzler partitions data into objects which represent units

of semantically similar data (e.g. similar access control, iden-

tification, or meaning). For example, a B-tree could be one

object, or multiple objects (if the programmer would like to

protect parts of the tree differently than others). Each object

is identified with a globally unique 128 bit ID, generated by

a method that produces an extremely low chance of collision

without needing coordination, such as random generation,

machine-specific prefix or (for immutable objects) hashing.

Persistent pointers have the form ⟨object_id, offset⟩, simi-

lar to PMDK [27] and other systems. Unlike other systems,

however, Twizzler uses indirection to avoid storing the (large)

object ID within the pointer. The object ID is stored in a per-

object indirection table [5], called the Foreign Object Table
(FOT), which enables external reference IDs to be encapsu-

lated within the source object while keeping pointers small.

A pointer encodes an index into the FOT and an offset within

the target object as ⟨fot_entry, offset⟩, as show in Figure 1.

The pointer can then be read from the source object and

used to lookup the corresponding entry in the source ob-

ject’s FOT to resolve the identity of the target object. Our

approach enables late-binding through this indirection, both

for security and for naming, as discussed in the next section.

3.1 Cross-object Data References
Since Twizzler’s pointers are formed by an object ID and an

offset, data in one object can refer to data in another. Data

relationships between semantically separate pieces of data

are common in systems, such as the myriad of interrelated

configuration files in /etc. Relationships are often either

implicit (the contents of /etc/passwd and /etc/shadow de-

pend heavily on each other, yet there is no explicit reference),

leading to debugging difficulty, or clumsily explicit (e.g., stor-
ing an entire path and needing to parse it).

In contrast, Twizzler’s cross-object pointers enable the pro-
grammer to explicitly encode data relationships, allowing

the programmer to express their application as operating on

data structures with each per-object FOT providing sufficient

context for the system to follow references. In twzkvs, the
index and the data are stored in separate objects. The index

object, I , has pointers to data in the data object D. When a

program performs a lookup, the KVS uses the index to locate

a pointer to the data in object D, which it then hands back

to the caller. Since the pointer is stored in object I , the caller
can dereference the pointer by using object I ’s FOT. We can

also have multiple data objects for the KVS if we want to

use different access control on each, described in Section 3.3,

and multiple indexes sharing different data objects to limit

discoverability or index the same data differently. Both of

these strategies are no more difficult to implement than one

index and one data object; in fact, it is the same code since

Twizzler makes cross-object pointers a first-class abstraction.

Because objects can easily store cross-object pointers, we

gain a significant simplicity over current programming mod-

els. Traditionally, the data managed by a KVS in Unix would

be stored in a single file, adding the complexity of managing

two different namespaces of data in a single, linear address

space. When implementing unixkvs, we chose to mirror the

twzkvs implementation by separating the index and data

into two files. However, either we need to store full paths

in the index file, leading to increased complexity for pars-

ing, opening, and reading during lookup, or the two have an

implicit relationship and need to be kept together manually.

Another benefit of the FOT is that objects are self-contained.

Any thread can pull in the index object and understand it

without needing per-process context from the KVS’s creator.

This is made possible by our choice of persistent pointers and
the choice to store the context needed to access data with

the data—in this case, the necessary context for all external

references from object O are stored within object O itself.

Note that we do not reduce flexibility compared to the

example above of storing paths. This is a form of late-binding,
where the binding of a name to data is resolved at access time.

We provide a similar ability; instead of storing an object ID in

an FOT entry, an object can instead store a name along with

a pointer to a name resolver function. The name is passed to

the name resolver (for which Twizzler provides a default if
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none is specified), which then returns an object ID. Names

provide flexibility for programmers, both because they can

be human-readable (like a Unix path) and because the ID to

which a name refers to can change over time. For example,

an object might have a pointer to a piece of data that is

information about today’s weather. Instead of needing to

update FOT entries every day, the object stores a name that

resolves to the appropriate ID, allowing objects to easily

reference data whose exact identity might change over time.

In addition to enabling late-binding, the consolidation

of object IDs for external references into a single, known

location per-object allows the construction of system utilities

which can operate on the FOT. Given some objects, and a set

of references between them, a generic utility can be written

to change the object to which a pointer refers. For example,

if object A references object B at an offset x , we can change

the reference from B to C without needing to know where

the pointer is stored in A or any other semantic information

about the contents of A. If A has multiple pointers to B and

we wish to update all of them, we can do so in a single

operation, thereby reducing the possibility of leaving A in

an inconsistent state.

Of course, generic system software cannot be written if

offsets need to change as they are based on semantic infor-

mation that generic system software may not have access

to. This is also a potential problem with using late-binding.

However, applications can anticipate changing object for-

mats. For example, shared libraries are a common form of

late-binding; binaries refer to the latest version of a particu-

lar library. In Twizzler, we allow this too; however, directly

referencing a library function from the caller’s code is brit-

tle as the location could change with each version. Instead,

Twizzler binaries store a pointer to a jump table within the

library. Each library can standardize its table, similar to sym-

bol tables and procedure linkage tables in ELF executables,

but with less runtime processing and overhead.

3.2 A Global Object Space
Our vision for an NVM programming model is not limited to

a single machine. The design choices in Twizzler naturally

extend to sharing object across machines. Object IDs, being

128 bits, are large enough for a truly global address space,

where all objects across all machines can be named by a

unique ID. Object IDs can be formed via random number gen-

eration (like UUIDs) or via concatenating machine-specific

identifiers with machine-local unique IDs (e.g. using a MAC

address). More importantly, if 128 bits proves insufficient, we

can easily increase the size of an ID through only modifying

FOT entries with generic software, as described above.

The original requirement for persistent pointers is to be

“correct” regardless of ephemeral mapping location. Since

object IDs are also globally unique, persistent pointer cor-

rectness is independent of the machine the object is on. Of

course, a given machine may not be able to access a given

object, but moving an object from one machine to another

via shallow-copy will at least not change the meaning of the

pointers in the object. This is a vital property for avoiding

expensive serialization and solves the problems encountered

by single-address space OS approaches when dealing with

coordination across machines [16, 31].

Another factor that improves data sharing across a net-

work is that objects are self-contained: objects can be moved

to another machine after creation without coordination on

data references or copying additional state. The combination

of globally unique object IDs and self-contained objects is

powerful and greatly simplifies data movement through a

network. Consider an application creating a index and data

object using twzkvs. The index object could be shipped over
to another machine without the data object—perhaps the

other machine wants to check for the presence of a key. How-

ever, if the other machine wishes to access the data, it needs
to dereference the pointer. If it does not have the data object,

it could send out a request to get it. Managing multiple copies

of objects, whether they function as caches to reduce latency

or replicas to provide fault tolerance, opens up a large design

space. As with crash consistency, our goal is to keep the

design of Twizzler orthogonal to coherency concerns so as

to avoid constraining possible designs.

The other machine need not worry about translating ob-

ject IDs and state from the source machine. Moreover, if the

machine cannot get access to the data object (perhaps for

security reasons), it will fail to dereference the pointer. It

would be disastrous if object IDs were not globally unique,

as the machine would have a chance of “successfully” deref-

erencing the pointer into some other data object, leading to

extremely difficult-to-track bugs.

3.3 Security for NVM
Our prior work discussed some of the design constraints on a

security system for enabling effective hardware cooperation

with other hardware and software [5]; here we discuss the

implications for software, where we need to protect against

unwanted accesses without significant kernel involvement,

leading to enforcement via hardware checking at access time.

A primary goal of our security model is to allow soft-

ware to set access control policy through persistent objects

without needing to use a separate API like POSIX files, thus

unifying the way software accesses and controls access to

persistent data. Twizzler defines access rights to objects

through cryptographically signed capabilities [15, 32] that

encode which objects can access other objects (for brevity,

we elide some details, e.g., objects can have default permis-

sions). Since access rights are defined for persistent objects

the kernel must understand the persistent object abstrac-

tion. If this were not the case, additional context would be

needed to map between object IDs and something the kernel

understands, such as a path.
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Enforcement and Late-Binding Taking the kernel out of

the persistent data access path requires reliance on hardware

to enforce access control on data accesses. Unix enforces ac-

cess control at open, resulting in a token that encodes access

control as a snapshot of permissions when the token was

granted (e.g. file descriptors in Unix). However, our model

does not have explicit open operations, instead replacing the
act of opening a file with dereferencing a pointer for which

we must rely on the MMU (with help from the OS as needed)

to enforce access control policy. This means that checking

access rights at access time is a requirement resulting from
our reduced kernel involvement and reliance on hardware.

In practice, the on-open access control check provided by

POSIX is often too rigid. Consider twzkvs: a program that

needs only read access to the KVS data most of the time

should not need to mmap it read-write every time it simply

reads data, or remap it if it needs to write. In POSIX, such a

program would need to either re-open the file as writable, or

open it read-write from the start, potentially failing to make

progress if the program does not have write access.

In Twizzler, we propose another use of late-binding: only

bind access permissions as they are needed. This allows a

program to request access to objects with rights they may

not have. In the above example, the program operating on

twzkvs can request read-write access to the data object by

marking the FOT entry with “read-write”. If the program

does not have write access to the data object, but never

writes to it, it is allowed to perform its task. Implementing

similar functionality in unixkvs was much more complex

and required a significant amount of support code.

A consequence of this model is that applications can rely

on the system-wide access control to provide a more fine-

grained access control in their domain. In twzkvs, the index
can point to multiple data objects, each with different ac-

cess rights. When inserting a key-value pair, a program can

choose which security level it wishes that pair to have. Later,

a program can look up a value given a key, but only read

it if the object’s permissions allow. We were able to lever-

age Twizzler’s built-in access control mechanism without

a single line of code in twzkvs dedicated to access control

enforcement, while maintaining its status as a library and
still handing out direct pointers to data.

The Role of the Kernel With the model discussed thus far,

the kernel is rarely involved in data access. The only time

the kernel is involved is checking access control policy for

objects on first access (handling a page fault) and setting up

the MMU to enforce policy. The kernel must also invalidate

existing MMU access controls on an object whenever rights

on an object are changed; subsequent accesses to that object

must go through a rights check again. This simple approach

reduces the risk of using stale permissions and prevents

TOCTTOU errors [33], since rights are checked on each

access and invalidated immediately when they are modified.

4 The State of the Art
This section compares our choices to those of existing per-

sistent pointer frameworks with a particular eye towards

PMDK [27], since it is arguably the leader in this space. Again,

we are not concerned with consistency and coherence, in-

stead focusing on programmability, flexibility, and security.

Programmability Like Twizzler, PMDK stores pointers as

⟨object_ID, offset⟩. However, where Twizzler uses indirection
through the FOT, PMDK stores the object ID directly with

the offset, as a type of fat pointer [21] that doubles pointer

size. This eliminates the benefits enabled by our use of the

FOT as an indirection table: not only does PMDK not support

late-binding, a vital feature to avoid constantly rewriting ref-

erences when data is updated, but it becomes impossible to

change the ABI in a backwards-compatible way. Twizzler

can increase ID size with minimal and controlled effect on

object format since such software can be written generically

in Twizzler and it only affects the FOT, not the pointers them-

selves. In PMDK, pointer length would would be affected,

limiting the ability to update them.

As discussed earlier, Twizzler can have generic software

that operates on FOT entries. PMDK’s choice to store ob-

ject IDs in pointers limits its ability to do this; programmers

need to provide application-specific solutions for all pro-

grams to update object IDs. This is worsened by the lack of

late-binding; whereas in Twizzler updating an object ID or

name might be a rare operation, PMDK either makes this

operation much more common or requires an application-

specific late-binding solution, both of which dramatically

add to complexity. Furthermore, if Twizzler does wish to up-

date all pointers within an object O that refer to object A to

instead refer to object B, it can do so in one operation, as de-
scribed in Section 3.1. Other persistent pointer frameworks

typically require multiple operations, one per pointer, to ac-

complish the same goal, with the risk of leaving an object in

an inconsistent state after a power loss.

Security Most persistent memory programming libraries

do not attempt to handle security, which results in more

complexity for programmers and leaves our late-binding

benefits on the table. Not only do such libraries need to rely

on existing security models (which are flawed for the reasons

discussed above), but they also fail to unify the language of

access control with the language of persistent data. This

means if a programmer wishes to define and enforce access

control on a PMDK object, they must do it through the POSIX

interface of the system, a completely separate interface than

the one with which they are programming their application.

Object ID and Pointer Size A significant motivation be-

hind the FOT was to allow Twizzler to leverage the advan-

tages of both large object IDs and narrow pointers. Small
object IDs have a negative impact on sharing data: PMDK

stores 64 bit object IDs that cannot easily be made globally

34



PLOS ’19, October 27, 2019, Huntsville, ON, Canada Daniel Bittman, Peter Alvaro, and Ethan L. Miller

unique, instead requiring either complex coordination to

manage the ID space or limiting object IDs to a per-machine

space, limiting PMDK’s scalability. Wide pointers negatively
affect both performance and memory use, and make it more

difficult for processors to operate atomically on them. In con-

trast, Twizzler uses indirection through the FOT to support

large object IDs (128+ bits) in narrow, 64-bit pointers. While

PMDK’s approach has an overhead of 8 bytes per pointer,
the FOT only adds a 32-byte overhead per entry, and entries

can be reused. Consider twzkvs, where an index object has

numerous pointers to a data object. An index with 50 key-

value pairs has 100 pointers into an external data object, so

the FOT approach adds an overhead of 4% per pointer while

PMDK has a 2× overhead (3× if PMDK used 128 bit IDs).

Per-machine object IDs further limits usability in a net-

worked environment. Should a program wish to share an

object in Twizzler, it can ship the object alone and all point-

ers will be correct. In a per-machine object ID space, sharing

an object necessitates swizzling the pointers from the source

machine to work on the target machine, updating pointers

as they are dereferenced, a complex, slow, and error-prone

process whose semantics leak to the application programmer.

Moving Forward As discussed above, we believe PMDK to

be an incremental improvement to programming persistent

memory, as it does not address issues of OS design, sharing,

and security. However, PMDK offers a useful position in

bridging the gap between the model of Unix and Twizzler.

Applications for PMDK can be easily ported to Twizzler,

since many of the interfaces are similar.

While we wish to replace the POSIX file model for NVM,

much of POSIX does not need to be attacked for an effective

NVM programming model, and Twizzler provides a POSIX

interface for porting existing programs (in which read and
write reduce to memcpy). However, the effects of replacing
the file access aspects of POSIX are more pervasive than may

appear. In replacing the file access model, we largely do away

with file descriptors. Much of the importance of a process is

tied to file descriptors, so we no longer need the vast amount

of internal kernel state that defines a process. Part of our

work on Twizzler will involve exploring the implications of

this reduction in internal kernel state for processes.

5 Performance Results
While Twizzler is still in its infancy, we implemented twzkvs
on it and measured its performance. We stress that the goals

of our work are to improve programmability and security in

NVM at an acceptable performance overhead, with any per-

formance improvements being a nice side-effect. The Twiz-

zler prototype was implemented by modifying a FreeBSD

kernel to provide a new set of OS interfaces that Twizzler

threads can use exclusively (without needing to use FreeBSD

services), as described in our prior work [5].

Table 1 shows the insert and lookup latency for both

unixkvs and twzkvs. We find a small performance improve-

ment in twzkvs, likely because unixkvs occasionally parses

paths (though we did allow it to cache them) whereas Twiz-

zler avoids such serialization. This shows promise that the

Twizzler approach improves programmability and security

without a significant performance cost.

Table 1. Insert and lookup latency for twzkvs and unixkvs,
measured on an Intel Core i5-7600K CPU at 3.8GHz.

KVS Insert Latency (ns) Lookup Latency (ns)
twzkvs 179.5 ± 2.5 63.6 ± 1.8
unixkvs 180.3 ± 3.3 66.0 ± 3.0

6 Conclusions & Future Work
To take full advantage of byte-addressable NVM, we must

consider approaches to NVM programming and system man-

agement that require redesign of the full system stack, re-

moving the operating system from the data access path while

simplifying programming abstractions. Incremental research

allows us to learn important implementation details for prop-

erly interacting with NVM technologies and to quickly de-

ploy NVM on existing systems, but leaves applications with

problems such as serialization and security management

that clean-slate, NVM-focused systems such as Twizzler can

solve in much simpler ways than existing approaches. When

rethinking the design of a system around a particular mo-

tivating trend, we must be careful to not turn a blind eye

towards other concerns and, in particular, how these con-

cerns interact. Twizzler, unlike some existing approaches,

provides mechanisms for a new security model, late-binding

and flexibility, generic evolution of the persistent pointer for-

mat, and inter-machine data sharing because those concerns

couple tightly with persistent data structures and must not
be an afterthought when designing effective programming

models for new technologies.

We are continuing to develop Twizzler, and are proto-

typing it as a standalone OS with support for networking

and key-value SSDs as a longer-term, lower-performance

storage medium allowing unused objects to be paged out to

lower-cost media. With this standalone OS, we will be able

to further demonstrate the utility of the approach we are

taking, and will further explore the implications of running

Twizzler in a distributed environment.
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